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Abstract

Snow crystals have a rich diversity of forms with striking hexagonal symmetry. The two-dimensional types include

dendrite, stellar, sector and plate forms. Physical studies have shown that the particular form of a snow crystal is

dependent upon the temperature and saturation in the growth environment. We investigate a simple, local, two-dimen-

sional model that has just two parameters exhibiting the desired diversity. The dendrite growth is especially realistic. We

use the model to investigate the impact of varying conditions of growth.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Snow crystals exhibit remarkable, intriguing sixfold symmetry while displaying a wide diversity of forms. Kepler

suggested in 1611 that the symmetry of snow crystals was related to the hexagonal packing of spheres [1], which is

remarkable foresight given the modern understanding of the hexagonal molecular packing of ice crystals [2]. Fig. 1

shows some of the diversity of naturally appearing snow crystals. These images are from the extensive collections of

photographs of natural snowflakes by Bentley and Humphreys [3]. Nakaya made a wide-ranging scientific investigation

of snow crystals, both natural and artificial, and also has provided extensive collections of photographs of snow crystals

[4]. He found that the form of snow crystals depended heavily upon the saturation and temperature during growth (he

actually directly varied the air temperature and the temperature of a water bath used to introduce vapor). The forms

observed include dendrites, stellar forms, sectors, plates, needles, columns, scrolls, and cups and many others. The

snowflakes could combine features in endless variety; for example, dendrites extending from the corners of plates

and plates appearing on the ends of long branches. He observed that many photographed images of snowflakes, espe-

cially those in [3], exhibit deterioration from sublimation and hence may not represent the most perfect snow crystals.

Our goal is to create a simple local model for snowflake growth that exhibits the variety of two-dimensional forms

seen in snow crystals. Motivated by Nakaya, we aim to use just two parameters. However, while we use general physical

notions to design our algorithm, we are not trying to fit equations of the physics. The model we give is two-dimensional,

so we can not hope to model the forms of snow crystals that have substantial three-dimensional components. For example,
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Fig. 1. Snow crystals: plates, sectors, stellar, dendrite, irregular and three dimensional.
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the needles and capped column shown in the lower right of Fig. 1 are beyond the scope of our model. Nonetheless, we

will see that we can easily exhibit simulations of the growth of crystals with sector, stellar, dendrite, and plate forms.

While all the forms of snow crystals have their beauty, the fernlike structure of dendrite growth is especially com-

pelling. Dougherty et al., have done extensive, more recent, work on dendrite growth in the laboratory [5–7]. Simula-

tions based upon phase field models may be found at [8,9].

Wolfram has popularized a Boolean model for snowflake growth [10,11] that evolves on a hexagonal lattice by the

following rule. At each time step, each cell is either ice or not. On the subsequent step, cells that were ice, remain ice,

while cells that were not ice, become ice if and only if exactly one of the neighboring cells is ice. While that model pro-

vides examples of abstract plates and sectors, it does not provide global dendrite or stellar growth. However, that model
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is offered in the spirit that Boolean hexagonal automata can have behavior surprisingly similar to a kind of snowflake

growth. We present a far more realistic model, but work in a similar spirit since we sought a very simple local model.

Coxe and Reiter [12] used a local model with real values based upon linear combinations and counts of cells of ice

appearing within a two level neighborhood. The coefficients, along with a background level, formed a set of five param-

eters used in that model. Sensitivity to background level appeared and a great variety of forms were easy to obtain, but

the growth was rather abstract and dendrite growth, in particular, did not appear very physical. Additional early cel-

lular growth models may also be found in the references to [12]. Also, like our model, a coupled map lattice is a local

cellular model with real values in the cells. Such models for crystal growth based upon physics have been considered

[13,14]. However, most of the work with coupled map lattices utilizes chaotic nonlinear maps for updates that are

not physically motivated and which, of course, produce sensitive and complicated behavior. Another paper with good

examples of simulated dendrite growth is [15]. Our model is simpler than those examples and varying the two funda-

mental parameters illustrates a broad range of growth patterns similar to those seen for natural and artificial snow

crystals.
2. Model and parameter diagram

The model we investigate uses a hexagonal arrangement of cells and each cell contains a real value. Very informally,

we view the value of any cell as measuring the amount of water at that cellular location. Values of one or higher are

taken to correspond to ice, while lower values are taken to represent water in a form that may possibly move to neigh-

boring cells. The automata we use can be described in two stages. Each stage may be computed by using a nearest neigh-

bor hexagonal real-valued cellular automaton, and hence the algorithm we use could be viewed as a one-stage

automaton on neighborhoods containing two levels. The first stage is to determine the receptive sites. These are the sites

that are ice or that have an immediate neighbor that is ice. At the next stage, the values of the cells are given by the

values at the receptive sites plus a constant plus a diffusion term. The diffusion term is a local average of a modified

cellular field obtained by setting the receptive sites to zero. The averaging will be discussed below. Fig. 2 shows a dia-

gram illustrating the computation for one small patch. Note that the zeros in the array of unreceptive sites are used as

values in the averaging while the zeros in the array of receptive sites are placeholders. The motivation for the model is

that receptive sites are viewed as permanently storing any mass that arrives at that point. The mass in the unreceptive

sites is free to move, and hence moves toward an average value. Lastly, the constant added to receptive sites corre-

sponds to the idea that not only is ‘‘add a constant’’ an especially simple generalization to the model, but it very infor-

mally captures the idea that some water may be available from outside the plane of growth.

The constant to be added to the receptive sites is one of the parameters that we vary. The second parameter that we

vary is the background level. We will ordinarily begin with a single cell of value one (an ice seed) in a sea of a constant

background. We will usually denote the added constant by c and the background level by b.
The boundary conditions are taken to be fixed at the background level at a fixed (Euclidean) distance from the initial

cell. These boundary conditions attempt to make the boundary conditions as isotropic as possible. However, different

points on the boundary are a different number of hexagonal steps from the center, so information takes different time to

flow from the center to different points on the boundary. Various weighted averages may be used on the unreceptive

field. We will use the average of the current cell value with the average of its nearest neighbors. Thus, the center cell

has weight 1/2 while the six neighboring cells each have weight 1/12.

Fig. 3 shows a diagram of the configurations resulting from several background levels 0 6 b 6 0.95 and addition

constants 0 6 c 6 1. We embedded a single isolated seed in an approximately 400 by 400 hexagonal arrangement of

the background level. We allowed the configuration to evolve until ice approaches the (circular) boundary or until

10,000 iterations had occurred. Notice the appearance of dendrites, stellar forms, sectors, and plates. The darkest half

of the gray values used in the image correspond to cell values below 1, with black corresponding to 0. The lightest half

correspond to ice; however, we reverse the values in this case so that white corresponds to 1. Thus we get contrast at the

boundary between ice and not.

When b = 0 and c = 0, no growth appears. When b = 0 and c > 0, plates form, the rate depending upon c. Regardless

of b, at high levels of c, we get plates, sectors or broad stellar forms. For low levels of c and at low levels of b, we get
dendrite growth; for high levels of b we obtain stellar or more abstract forms. There is considerable variety of forms and

the dendrites appear remarkably natural.

Fig. 4 shows more detailed versions of selected choices of parameters illustrating thin dendrite growth, thick dendrite

growth, dendrite growth that has nearly collapsed into a stellar form and a somewhat abstract sector form. On the thin

dendrite one can observe many lengths of secondary dendrites and tertiary dendrite growth is visible. Notice the fairly

regular pattern of secondary dendrite growth on the thicker dendrite. The lower left is the result of very regular dendrite



Fig. 2. Illustration of the algorithm on a small patch.
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growth where the growth overlaps and forms a kind of stellar form. This would be more apparent if a small amount of

melting or blurring of the form occurred. The final example has a kind of sector form. We describe such growth as ab-

stract since there are somewhat unnatural small gaps in the form. The Packard-Wolfram model has very similar fea-

tures. Again, a small amount of blurring could lead to realistic forms for snowflakes.

Illustrations for additional values of b and c, some different growth field radii, and some animations of the growth

for selected parameters may be found at [16]. The animations there make it clear that the dendrite growth develops

through phases. We also see the diversity of forms and basic qualitative behavior is maintained over the given range

of radii.
3. Variation on diffusion

The diffusion of the vapor field of the unreceptive sites at a position P and time t, denoted u(t,P), is expected to

satisfy the diffusion equation ou
ot ¼ ar2u where a is the diffusion constant and r2u ¼ o2u

o2x
þ o2u

o2y
is the Laplacian. The

Laplacian may be approximated on the hexagonal lattice via
r2u � 2

3
�6uðt; P Þ þ

X
N2nnðPÞ

uðt;NÞ
 !



Fig. 3. Growth forms that appear as b and c vary.
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where nn(P) denotes the set of nearest neighbors of P. Thus, solutions may be approximated on a hexagonal lattice by
uðt þ 1; P Þ � uðt; P Þ þ a
12

�6uðt; P Þ þ
X

N2nnðPÞ
uðt;NÞ

 !
where we have reorganized constants via a = 8a so that our model with center weight 1/2 and weight 1/12 for neighbors

corresponds to taking a = 1.

The actual growth is very sensitive to a. In our experience, when not taken to extremes, the qualitative behavior of

the (b,c) diagram does not depend on the choice of a. However, the details vary considerably. Fig. 5 shows examples

where the diffusion constant is varied for b = 0.4 and c = 0.0001. Notice that a = 0.5, 0.501, 0.502 each give very



Fig. 4. Selected dendrite, stellar and sector forms.
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different pictures; however, they all exhibit dendrite growth. The figure also shows the standard model when a = 1 which

appears very similar to the a = 0.5 case. A pretty growth pattern with many levels of dendrites occurs when a = 2.003

and an extreme situation, with explosive behavior, occurs when a = 2.69. When a has reached that last level, the original

site is weighted a negative amount; hence the unnatural behavior is not surprising. Animations showing the sensitivity

of growth to a appear at [16].
4. Variations on conditions

One of the advantages of having a simple model is the ability to study variations. We first consider modified initial

conditions. Fig. 6 shows some examples where small random configurations on patches of size q = 3 or q = 5 are used.

The first shows dendrite growth with six different branches, but the basic type of growth seems similar on each branch.

The second is similar, but with thicker growth. The q = 5 examples show more substantial changes from sixfold sym-

metry. They seem to have close to bilateral symmetry in two directions. The first is somewhat suggestive of the irregular

form at the lower left of Fig. 1. The last example has, striking gaps, and clearly visible fourth level dendrite growth. A

b�c table giving some additional examples for q = 3 can be found at [16].

Secondly, we consider some examples of what happens when the growth parameters are changed partway through

growth. This is motivated by the idea that naturally occurring snow crystals form as they fall through air with different

temperature and humidity. Fig. 7 gives two examples. The first begins with parameters giving plate growth, then c is

changed so that dendrite growth occurs. The second begins with dendrite growth, the unreceptive field is then propor-

tionally changed to meet new boundary conditions, and growth continued with parameters that correspond to abstract

sector/plate growth. We see it is fairly straightforward to create slightly imperfect crystal growth and to combine growth

forms on the same crystal.



Fig. 5. Variety of forms appearing for different diffusion constants when b = 0.4, c = 0.0001.
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5. Conclusions

A simple model on a hexagonal array of cells shows many of the growth forms seen in naturally occurring snow

crystals. The model uses real-valued cells and a distinction between receptive and unreceptive sites is made using a

threshold. Except for the threshold, the updates are smooth. Like the saturation and temperature controlled in

laboratory snow crystal experiments, the model has just two parameters. Varying those parameters results in realistic



Fig. 6. Growth from a random initial cluster.

Fig. 7. Growth when parameters are changed.
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dendrite growth, along with plates, sectors and stellar forms. We see that changing the initial seed configuration and

changing the growth parameters can result in growth with realistic appearance. While this two-dimensional model

cannot model the forms of snow crystals that are distinctly three-dimensional, it does a remarkable job for the two-

dimensional ones. We hope that this simple model inspires further investigations using discrete local cellular models

for the study of phenomenon that exhibit sensitive behavior with a diversity of forms.
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