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Varying electric charge in multiscale spacetimes
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We derive the covariant equations of motion for Maxwell field theory and electrodynamics in multiscale
spacetimes with weighted Laplacian. An effective spacetime-dependent electric charge of geometric origin
naturally emerges from the theory, thus giving rise to a varying fine-structure constant. The theory is
compared with other varying-coupling models, such as those with a varying electric charge or varying
speed of light. The theory is also confronted with cosmological observations, which can place constraints
on the characteristic scales in the multifractional measure. We note that the model considered here
is fundamentally different from those previously proposed in the literature, either of the varying-e or

varying-c persuasion.
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I. INTRODUCTION

In the last few years, interest has been raised on space-
times which, due to quantum-gravity effects, show anoma-
lous behavior of their geometry. Independent approaches
to quantum gravity, ranging from asymptotic safety, non-
commutative geometry, causal dynamical triangulations,
and spin foams to fractal field theory, Horava-Lifshitz and
super-renormalizable gravity, display a feature known as
dimensional flow or dynamical dimensional reduction,
namely, the change of spacetime dimensionality with the
scale [1-3]. The quest for a quantum theory of gravity
presently aims, among other and perhaps more urgent
objectives, to understand why effective quantum geometry
exhibits, at short distances, the typical properties of fractals.
The presence of this almost universal behavior encouraged
to seek common explanations and relations among the
theories, as well as the relation between their desired-for
ultraviolet (UV) finiteness and dimensional flow.

A framework where these questions may be posed with
clarity is field theory in multiscale, in particular multifrac-
tional, spacetimes (short presentations of these models can
be found in [3-6]). This is a field theory in an ordinary
sense, constituted by a set of hand-made tensor and spinor
fields on a continuum obeying an action principle and the
usual quantization rules, but such that the measure of the
action represents a geometry with anomalous properties.
The form of this measure is dictated by requiring that it
encodes certain structures of multifractal geometry, includ-
ing the presence of a hierarchy of scales. Modulo a change
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in the geometry (and, hence, the symmetries) of the model,
one should be able to ask the usual questions one can
answer in a conventional perturbative field theory, thus
opening up the possibility to study the above-mentioned
relation between renormalizability and dimensional flow,
even in the absence of gravity. However, the definition of
the theory itself is still in progress and one has to start by
defining simple classical systems later to be quantized.

This program was started in concrete in [7] for a real
scalar field. Here we shall extend the treatment, only at the
classical level, to an Abelian gauge field and construct first
Maxwell’s action and then electrodynamics with fermions.
The procedure for deriving the equations of motions and the
energy-momentum tensor is the one of [7] adapted to vector
and spinor fields. We shall work out classical Maxwell
theory and its equations for the electric and magnetic fields,
as well as the equations of motion of electrodynamics in the
presence of fermions and a U(1) gauge vector field. As
expected, Maxwell’s equations for the electric and magnetic
fields are affected by the anomalous nature of the back-
ground geometry; in particular, we will find a modified
conservation law for the charge density which suggests that
the electric charge may vary in time and position.

Although the subject is of intrinsic interest, we must
highlight an important spin-off resulting from the existence
of an effective electron charge which depends on the
spacetime measure. Models with spacetime-dependent
couplings (violating the equivalence principle) have
received considerable attention especially in the sector of
electrodynamics. The fine-structure constant a = e?/(fc)
depends on the electron charge e, the Planck’s constant 7,
and the speed of light ¢. When one or more of these
constants are promoted to coordinate-dependent parameters,
one effectively obtains a time-space varying a.
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Theories with varying couplings, either at an effective or
a fundamental level, are not a novelty in theoretical physics.
Aside from sheer scientific curiosity, they find some
justification in the fact that observations, both terrestrial
and astronomical [8,9], do not exclude that the constants of
Nature are, eventually, not really constant [10]. For instance,
there exist constraints on the variation of the fine-structure
constant, which depend on the time and spatial scale of the
experiment [10-13]. A comparison of rates between differ-
ent atomic and molecular clocks in laboratory give
|Aa/al < 107 = 10717 (see [10,13] for a detailed compi-
lation of results), where Aa = a(t) — a(t,) is the change in
a from some time 7 in the past with respect to today’s value
a(ty). Model-dependent data analyses of the Oklo nuclear-
fission event of about 1.8 billion years ago obtain roughly
|Aa/al < 107% [10]. Further back in time, low-redshift
quasars at z = 0.25 and z = 0.68 (corresponding to a look-
back time of about 3.0 and 6.4 Gyr, respectively, using the
best-fit parameter estimates from the Planck+WP+highLl
dataset [14]) indicate that |Aa/a| < 107 [15-17]. Recent
observations (at Keck observatory) of quasars at larger
redshift yield an almost 5¢ evidence that the fine-structure
constant was smaller at early epochs [18-20],

A
28 (—0.57£0.11) x 1075,
a

02<z<42, (1)
which can be further split according to the redshift
range: Aa/a=(—0.54+0.12) x 107> for z < 1.8, Aa/a =
(=0.74 £0.17) x 1073 for z > 1.8.

However, data from the Very Large Telescope (VLT) on
different samples and using different methods of analysis
gave results compatible with a nonvariation of a [21,22],
and there is some ongoing debate [23-25] (see [10] for a
review). To make things even more confusing, further
data from VLT seems again to indicate a variation of a at
large redshift, but of opposite sign with respect to Eq. (1)
[26,27],

A
2 (4021 £0.12) x 1075,
[04

02<z<37, (2
again split in two estimates: Aa/a = (—0.06 £0.16) x
10 for z < 1.8 and Aa/a = (+0.61 £0.20) x 107> for
z > 1.8. This can be reconciled with Eq. (1) via a dipole
model [26,27] if a admitted spatial variations (Keck and
VLT are located in different hemispheres and probe differ-
ent directions in the sky). Other quasar observations do not
show a temporal change in @ (Aa/a < 107 at z ~ 1.7) but
they are not incompatible with the dipole model either [28].
Still, the detection of a varying a and a dipole effect is
controversial and unconfirmed (or contradicted) by yet
other quasar data (Aa/a < 107 at z ~ 1.3) [29], lensed
galaxy spectra (Aa/a < 107> at z~5.2) [30] and data
reanalyses [31]. Spectra observations of nearby (~45 pc)
white dwarfs may provide independent constraints on the
variation of « in the near future [32].
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Any varying-a field theory should be able to comment
on these findings, either by explaining the dipole effect or,
through the above experiments, placing constraints on the
free parameters (if any) governing the spacetime depend-
ence of the fine-structure parameter a. The latter is one of
the goals of this paper.

The plan is as follows. In Sec. II, we review the theory
of multiscale spacetimes. Then, in Sec. III we set up a
gauge-invariant electromagnetic theory living on such a
space. In Sec. IV, we compare our framework with varying-
e and varying-c models proposed in modern and contem-
porary literature, commenting on how the phenomenology
of multifractional spacetimes fares with respect to these
approaches and the above physical constraints. Finally, in a
concluding section we summarize our results and outline
future work.

II. BRIEF REVIEW OF MULTISCALE
SPACETIMES WITH WEIGHTED LAPLACIAN

Field theories in multiscale spacetimes are defined by an
action

+0o0
S= / do(x)L, 3)

o]

where ¢(x) is a generic Lebesgue—Stieltjes measure
with anomalous scaling. We assume that the measure
can be written as dgo(x) = dPxw(x), ie., is the usual
D-dimensional volume element multiplied by a distribution
law v(x), where D is the number of topological dimensions.
To make the problem tractable, this measure weight should
have the following properties:
1. Be factorizable in the coordinates,

D—1

v(x) = [ val), )

u=0

where the D functions v, may be all different. In the
“isotropic” case, they are all equal.

2. Be positive semidefinite, v, = v,(x) > 0.
Violation of either of these conditions would hinder
the definition of an invertible momentum transform [33]
and the construction of Noether currents [7], and would
give rise to other problems at the level of quantum
mechanics [34].

The prototypical measure obeying a neat anomalous
scaling law is fractional, i.e., of the form

o(x) = v,(x) = [ Jeala) =

where 0 < a, <1 are D parameters (all equal to their

average a:= () _,a,)/D in the isotropic case) and the factor
I['(a,) is inherited from the definition of fractional integral
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associated with this kind of measures [35]. It is easy to
check that the Hausdorff dimension of spacetimes endowed
with this class of measures is given by o(Ax) = A%g(x),
where dy = Da < D, as can be found also by looking at
the way balls scale with the radius [7,35]. Fractional
measures of the form (5) have been shown (in a one-
dimensional embedding) to represent random fractals as
well as an approximation of deterministic fractals [36—43]
(see [35] for a discussion on this approximation). In this
precise sense, the choice of (5) is in direct contact with
fractal geometry and singled out among all possible
arbitrary functional profiles v(x).

To get a geometry where the spacetime dimension varies
with the probed scale, it is sufficient to sum over a
minimum of two values of a [7,44,45]:

v(x) = v.(x)
N
—HU*W‘)==H[Zgﬂ,n<{fﬁ}n>va,,(x”) )
H u Ln=I1

where N is integer and the dimensionful couplings g, ,
depend on a hierarchy of length scales #4,. When N = 2, the
measure is called binomial and it realizes a monotonic
dimensional flow between two asymptotic regimes. In
particular, to get dy = D in the infrared, one can take
the spatially isotropic choice ay; = ay, a;; = a, <1,
a2 =1, gog =T(a)lt.|'""*, g1 = ()£, and
9u2 = 1, where 7, is a fundamental spatial length and 7,
a characteristic time. Then, in the UV dy=ay+ (D —1)a,
and

va(X) = lﬁ [1 + (';J)_l] . (f) =1+

i=1

(7
Further generalizations, as to log-oscillating measures, are
possible [4,44,46] and even in closer contact with fractal
geometry [43].

The Lagrangian density £ in the action (3) is made up of
tensor fields as in theories in ordinary spacetime, except
that the differential structure of the geometry they live on is
modified by the nontrivial measure. There exist various
models of multifractional geometry depending on the
symmetries of the Lagrangian (see [47] for a detailed
discussion), but here we choose to consider the one where
the natural derivative is a self-adjoint operator with respect
to the scalar product with measure g, so that the Laplace—
Beltrami operator [J = 9,0* of Minkowski spacetime M”
is replaced by

K,=n"D,D,, ~ D,:= V() -], @)

u

where 1 = diag(—, +,---,+) is the Minkowski metric.
Thus, when constructing a field theory on these spaces, it is

PHYSICAL REVIEW D 89, 024021 (2014)

natural (but not sufficient, as we will see below) to take the
standard action for the fields of interest (scalars, vectors,
fermions, and so on) and make the replacements d”x —
de(x) and 0, = D,.

With this Laplacian, one can then derive the diffusion
equation through a Langevin-equation approach and, from
that, the spectral dimension dg of spacetime, which is
anomalous in general (that is, dg # dy # D) [47].

III. ELECTROMAGNETISM AND FERMIONS
IN MULTIFRACTIONAL FIELD THEORY

In this section, we set up electromagnetism in the
spacetime reviewed just above. We note that the topic of
electrodynamics in multifractional spacetimes is practically
virgin. To the best of our knowledge, a Maxwell field
theory has been briefly considered only in [48], for a
fractional measure and an ordinary Lagrangian. There are
some results in other, quite different models of anomalous
spacetimes, such as the one due to Stillinger [49,50] (where
the electromagnetic wave equation has been studied
[51-55]) and Nottale’s scale relativity [56-58] (Maxwell
action and electrodynamics [59-61]). Both approaches
have been compared with the multifractional framework
in [44,62]. Fractional calculus has been more extensively
employed to describe Maxwell electrodynamics with frac-
tal charge distributions [63,64] or in fractal turbulent media
[65,660] (where a fractional integration measure makes its
appearance), or in dielectric media and various problems
[67-83] (where effective electromagnetic equations sport
fractional derivatives). These scenarios are neither associated
with intrinsically anomalous spacetimes (except as a heu-
ristic motivation for [79,82]) nor formulated in a field-theory
context.

A. Maxwell action and equations

In this subsection only, we will fix the units so that
¢ =1 = h. The equations of motion are derived from a
variational principle 65 = 0,' where & represents the field
variation at a given point, §f := f’(x) — f(x) for any field f
(hence, v being a fixed coordinate profile, §(vf) = v5f).
Assuming that the Lagrangian density only depends on an
Abelian gauge field A, and its weighted derivatives D, A,,
one has (integration is over the whole embedding M?)

5S:/dev(x)5£(Ay,DﬂAy)
NIV I . |
_/d xv(x) L,)AyéAy—Fa(DﬂAy)é(DﬂAu)
PN [V :

_/d xv(x) {aAyéA”—'—@(D 1 )DﬂéAy , )

ut

'A fractional version 6, of functional variations exists [7], but
in the present setting it gives the same equations of motion.
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where we used the field-variation property [D,,d]A, = 0.
Using now the Leibniz rule

D,(ab) = (0,a)b + aD,D, (10)

it is not difficult to show that

oL 10,v 0L
_ D _ K =
oS = /d xv(x){aAy5A,, 3 0 8(D”AU)5A”
oL vOL
O [aw,,Ay)] P40, [awﬂAu) 5*‘”] } (an

The last term is a total derivative and it can be thrown
away by virtue of the condition A, — 0 on the field
variation, when x* — oo (later on, we will keep it when
computing the variation under a coordinate transforma-
tion). Also, a continuity condition [7] guarantees that the
boundary term is zero at x* = 0*. Thus, the equations of
motion read
kgl w
0A, JdD,A,)

Notice that the same form of Euler—Lagrange equations
(as well as the ensuing conservation laws below) would
hold for a derivative with arbitrary weight,

D— D:= iﬁa[vﬁ-}. (13)
v

However, only for the self-adjoint case = 1/2 is the
theory invariant under a reordering of the operators in the
action.

1. Maxwell equations

Let us now choose L to be the Maxwell Lagrangian with
source J,

L=Lp+J,A", (14)
1 »
Lp= — g Fulf™ (15)
where
F,,=D,A,—D,A, (16)

is the (antisymmetric) field strength of the gauge vector.
Then, one obtains the Maxwell equations with source,

D, P = J¥. (17)

Applying the operator D, to this equation, and taking into
account that [D,,D,] =0 for factorizable measures, we
find that the current J obeys the (non-)conservation law
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D,J* =0. (18)

Thus, the action (3) with Lagrangian density (14) is
invariant under the gauge transformation

A, — A, +D,g, (19)

where ¢ is a scalar field density.
In D = 4 dimensions, writing down the field strength in
terms of its components,

0 E E E
—E, 0 By -B,
~E, =By 0 B, |’
—E; B, -B, 0

P = (20)

we get the first pair of Maxwell equations from (17), telling
how the divergence of the electric field and the curl of the
magnetic field depend on the source:

D-E=D,E =J°, DxB-DE=j, (21
where the index i runs on spatial directions and j' = J'. In
ordinary spacetime, the component J° = p is the charge
density and, integrating the first equation over the whole
volume, one gets the total charge, proportional to the
electron charge e, which is a constant. To see what we
should expect instead in a multifractional ambient space,
we notice that Eq. (18) leads to

Dp+D-j=0. (22)

Thus, even in the absence of spatial current density, the
charge density p is not conserved in time, p = —pv/(2v).
In general, from the time component of the current density
J# one defines the electric charge

0= / do(x)J° (23)

as an integral over the multifractional spatial volume of the
charge density. Applying the operator D, or 0, to the = 0
component, one finds D,Q # 0 # Q, due to the fact that the
left weight »~1/2 in D; in (22) does not cancel the one in the
spatial measure, and one does not obtain a total divergence.

The source of this novelty lies in the fact that J is a vector
density with weight —1/2 with respect to ». Due to the
nontrivial weight v in the action (3), £ is a density, and so
are A,, JV (vector densities), and F,, (rank-2 tensor
density). This immediately defines actual tensorial quan-
tities A,, J#, and F,, under the field redefinition

A=A, FLlA=0,A4,-0,A,=\vF,[Al, (24)

T = \ulk, (25)
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so that, in particular, the Maxwell action can be reduced to
the ordinary one:

SIALJ] = S[A, J] = / dPx (—%j’-‘”y}""” + j,,Aﬂ) .
(26)

Notice the complete disappearance of the measure weight
into the new fields. This is nothing but the “integer picture”
of [7], such that free fractional systems can be formally
(the geometry is still anomalous) mapped onto ordinary
systems via a field redefinition. The deduction of the
equations of motion (17) could have proceeded as in the
standard case by working with A and 7.

There are three remarks one can make here. First, whilst
under an ordinary Lorentz transformation A*(x") =
AJA¥(x) transforms as a vector, the density A acquires
an extra weight factor:

/ VAN v(x) H AV
AF(X) = U(x,)A,,A (x), 27)
where
xXH = Ax¥ (28)

and A#, is the usual Lorentz transformation matrix. The
vector density A’* = A,A* is defined via the operator

i v 1 iy i OHY
A, =e3" % = — ] /v, A, =e2n 0 (29)
v

NG

where @ is an antisymmetric matrix of parameters and Q
are the fractional Lorentz transformations in D-vector
representation:

1 - _
Q= QI (@) = 0%~ ). (30)

The Q¥ generate ordinary rotations and boosts. Expanding
as A, =1—(i/2)w, 2", v(x)/v(¥') & 1 —0,v5x"/
(2v), and noting that 5x* = —(i/2)w,,(Q7)yx*, it is easy
to find the infinitesimal version of Eq. (27). The infinite-
dimensional field representations of the fractional Lorentz
generators can be derived along similar lines [7].

Second, assuming D =4, F% = £ and F = €'/*B,
obey the ordinary Maxwell equations V-&=p and
V x B—& =], with

px) =T = /o(x)p(x) (31)

and J' = J'. From the divergence of the current (18),
8#J # =0, one has charge conservation, Q = 0, where
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Q:= /dxjo. (32)

One can directly check conservation of p by integrating
Eq. (22) in [ dx+/v(x). The sourceless Maxwell equations
are immediately given by the Bianchi identity for the
antisymmetric 2-tensor aylf”""””*Z =0, where
FrHe2 — giiio F /2 is the dual field strength
and e #r is the Levi-Civita symbol in D dimensions.
In D =2, F and its dual are proportional to each other
(there is only one nonvanishing component) but the theory
is trivial since there are no propagating degrees of freedom.
In D = 3 there is only one sourceless equation, and the
missing one (V - B = 0) signals the possibility of magnetic
vortices. Only in D = 4 do the number of equations with
and without source coincide. In general, the Bianchi
identities yield D(D — 1)/2 independent equations. All
this applies also to the multifractional model, where the
Bianchi identity and Eq. (24) give

Dﬂ]i?ﬂl"'ﬂufz =0, FriHpa — %eﬂl'”ﬂDF

Hp-1HD"

(33)
In particular, in four dimensions it corresponds to
D-B=D;B =0, DxE+D,B=0. (34)

The third consequence of having an anomalous geom-
etry is that, looking at Eq. (31), one is led to define an
effective spacetime-dependent electron charge,

) 35)

assuming a given volume. In fact, for a uniform charge
distribution p = ney/V;, while p = ne,/V,,, where n is the
number of charges in the volume. If the two volumes were
equated numerically, one would obtain the relation (35).
However, in fact they carry different measure weights, since
V,/V; ~ v, and it would be more natural to define another
fractional charge e ~ /vey. This charge will indeed appear
in Sec. III B. For the time being, we discuss Eq. (35) and its
relation with the observed electric charge.
Notice that the Maxwell field strength (16) can then be
written as
F,, =e,[0,(e;'A) —0,(e;'A)]. (36)
later to be compared with Eq. (63). Equation (35) will
emerge later on in a slightly different way, but we must
already mention a caveat associated with it. The quantity e,
is not the charge sourcing the physical electric field E living
in multifractional spacetime, since Q # Q/+/v, and e, does
not represent the fractional electric charge Q measured in a
given Hausdorff volume. So which quantity can one
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measure in an experiment? To answer this question, we
rewrite Q via (25) as

0~ [axu(r = [axo(x) ﬁ

_ ;(t) / dx\/o(x) 7", (37)
V Yo

At this point, we recall that in multiscale spacetimes
dimensional flow is possible because a tower of scales is
established, where the top corresponds to the scale
measured by a macroscopic observer. This happens not
only in multifractional spacetimes but also in other
field-theory approaches to quantum gravity, in particular
asymptotic safety [62]. Therefore, it would be desirable
to express Eq. (37) in terms of the electric charge Q one
would measure in a world with integer, ordinary geometry.
To this purpose, we plug the binomial measure (7) in

Eq. (37) and expand the factor /v, (x)/v,(t) in the limit of

small Z,:
a—1
)]JO. (38)

Qz\/v;*—(t)/ rﬁdx"(l—l-%

xl

s

To leading order, one ends up with

, (39)

which identifies an effective time-dependent observed
charge,

e.(t) = . (40)

L

t

1_%)60, (41)

which is positive definite consistently with the ¢, /¢ expan-
sion. The result (40) is actually exact for a uniform charge
distribution, because the constant term of the spatial
measure weight always dominates in the numerator of
Eq. (37) at large x (since 0 < a < 1), and it cancels the
denominator in J° = Q/( [ dx). Inclusion of spatial gra-
dients or, more generally, an inspection of the system at
small scales will modify the observed charge to a hybrid
between Eq. (35) and (40), via (37).

A comment here is in order. The integer picture is only
a mathematical tool to simplify the problem, and one
should not reach the conclusion that multiscale theory is
physically equivalent to the usual one under the field
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transformation (24)—(25). The reason is that the most
general multiscale action with interacting fields is not
equivalent to the usual one, due to the presence of
effectively spacetime-dependent couplings after the field
redefinition [7]. Thus, it is not always possible to reabsorb
all measure factors and there typically is a nontrivial
geometric effect. One could, in turn, assume that the
integer picture is the physical one, with the consequence
that the physically observed charge is Q, not Q, and
electromagnetism is essentially the usual one.

This problem of “frame choice” (fractional versus
integer) is reminiscent of the situation one encounters in
Brans—Dicke theory, where one can choose between the
Einstein and the Jordan frame. In the former, Einstein’s
equations are valid (with a constant G), but matter is
nonminimally (but universally) coupled to a scalar field,
providing a fifth force satisfying the most basic form of the
weak equivalence principle. But Jordan’s frame, where
matter is minimally coupled, is indeed the frame where
matter follows the geodesics of a metric (a stronger version
of the weak equivalence principle). In Jordan’s frame a
varying G is more evident, but in either frame we cannot
deny that we have a theory with a varying coupling constant
(gravitational in this case).

A similar phenomenon was already found and discussed
in the context of varying-speed-of-light theories, as we will
see later. Here something similar happens: the integer
picture produces the same type of effect one gets when
transforming from the Jordan to the Einstein frame. In the
fractional picture, one is considering a field theory on a
multiscale spacetime where geometry (volumes, and so on)
is measured with respect to the integro-differential structure
determined by the weight v(x). There, experiments entail
the field densities E, B, the charge O, and so on. The
integer picture, on the other hand, is a theory with ordinary
Maxwell fields £ and B and measured charge Q, where
geometry is standard, Maxwell theory is standard, but a
spacetime dependence arises in the couplings of other
sectors of the full action.

2. Energy-momentum tensor

To calculate the Noether current, we take the variation (S
with respect to a coordinate transformation x* —
x* + 6x*, and denote the coordinate variation of a field f
as 8yf = f'(x') — f(x). For infinitesimal transformations
and after Taylor expanding, there follows a relation between
8y and the field variation 6: 6,f (x) = 6f(x) + 6x*0,f(x).
In [7], it was shown that a fractional scalar density field
¢ transforms as Sy = —[0,v/(2v)|6x*¢ (# 0, contrary
to a proper scalar) and 6¢ = —6x*D,¢. For the vector
density A,, a similar calculation from Eq. (24) yields, under
a translation &x* = —e# = const, Al (x) = A, (x+¢€)/
Vu(x) = \/v(x+€)/v(x)A,(x + €), which in infinitesi-
mal form reads
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1 0w
0A, = e#D,A, = A, = €' ——A,. (42)
2 v

Consider now the total variation of the functional action
under an infinitesimal coordinate transformation, J¢S =
JdPx[8(vL) +vL5y(dPx)]. Since y(dPx) =dPx —dPx=
det(9x'*/9x*)dPx —dPx=det (8, 4+ 0,6x*)dPx—dPx and
det(1 + O) = 1 + tr(O) for any operator O, it follows that
5(dPx) = 9,6x*dPx as usual. Furthermore, &y(vL) =

6(vl)+0 (vﬁ) Sx#, and using the equations of motion
we get, for a translation,

vOL
= D H
508 /d x{vﬁaﬂéx +0,(vL)ox 40, [8(DA )5A }}

0L
Jd(D,A,)

42) D e v
/d xﬁﬂ[ vLle +78(D”Aa)

- / 4P, (vT")e, (43)

= / d?xd, [vﬁﬁx" + 5A,,]

€”D,,Ag}

where the last term in the first line is the total derivative in
(11) and we defined the energy-momentum tensor density,

oL DA

Ty =N L — = .
puv 77;4u£ 8(D”AG) vile

(44)
In the last line of Eq. (43) we used the constancy of ¢,
which is an arbitrary parameter. For the Maxwell
Lagrangian, one has

v

1
T = _ZFGTF(;TWW + FMGDDAH + JﬂAU”ﬂV' (45)

This equation is not gauge invariant, since it depends
explicitly on A and J. For later use, we only rewrite the
second term in the right-hand side, ignoring the source
contributions. As in the usual case, we can add the
divergence of a rank-3 tensor (dens1ty) antisymmetric in
the first two indices, T, = T}, + D’ Xou» Where

D, = -8,[v. (46)

In fact, f)”’[)”x,,,w = 0, which does not change the (non-)
conservation law we will find in a moment. Also, for 4 = 0
one has a total spatial divergence D°X,, = D'X,o, which
does not affect the momentum P* := [ do(x)T%. Choosing
Xow = FpuA, and using Eq. (17), one can rewrite the
energy- momentum tensor (45) as

T

Hv

1
- ZFUTFGT”IW + FHGFW - ‘IHAV + JGA"I/I/‘”

= (F>T;w + T 47)
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where we split the first and last two terms in separate
contributions.

The fractional Maxwell action is not invariant under
translations, due to the source term. In fact, the latter is
not a field but a coordinate vector profile. In particular,
SoJ# = JF(x —€) — JF(x) = —€”0,J*(x) and

/ 0¥ () L () — / 42 x0(x) L (x)
_ / 4P x[0(x — &) (x — €)A, (x—€) — v(x)JH(x)A, ()]
- / dPx(—JHA, €D, 0+ 1IUS)A, + VA, 80"
) / dPx <—J”Aﬂ€”8yv +%J”AM€”8DU - vAﬂe”al,J”>
— / dPx0(A, D, I )

Therefore, from Eq. (43) and the arbitrariness of €, one gets
the conservation law

D, T} =A,D,J". (48)
The natural derivative acting on the energy-momentum
tensor has weights v because T is a bilinear density.

The conservation law (48) can be verified directly from
Eq. (47). Noting that D, F, +D F, —l—D F,, =0 and
using Maxwell’s equations, we have Dﬂ( ITH, = =—J'F,,
On the other hand, D,VT¥, = J'F,, u+AD, a
Combining the two contributions ylelds Eq. (48)

The source term in Eq. (48) arises because the action
does not include the matter contribution. It is well known in
standard electromagnetism that, when a charged relativistic
particle is added, the total energy-momentum tensor is
conserved [84,85]. In multiscale spacetimes, one can adopt
the same procedure and end up with a conservation law
lv)ﬂT’,’(ft = 0. This law is not the usual one 9, 7" = 0, which
is not a new effect in varying-e scenarios. In fact, even in
the most conservative varying-a theories such as those
pioneered by Bekenstein, the energy-momentum tensor of
radiation is not conserved (see, for example, Eq. (7) of
[86]). We will not consider the relativistic particle here, as it
would constitute a rather lengthy detour from the main
focus of the paper.

B. Electrodynamics

We now move to the action of electrodynamics and
include fermions,

S = /dev(E(,, +L,+Lp), (49a)

L, =ipy*D,y, (49b)

024021-7
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Ly = —mpy, (49¢)
where Ly is given in Eq. (15), y* are the usual Dirac
matrices obeying the anticommutation algebra {y*,y"} =
2n*, =y 'y" is the Dirac adjoint, and

e

D”::D”+ihc

A, (50)
is the gauge covariant derivative. Here we denoted as e the
“electron charge,” later to be related to the constant charge
ey and the effective charge e,. Also, the fundamental
constants are restored for later comparison with other
theories. We still maintain arbitrary D dimensions since
we will not consider axial currents, thus ignoring the well-
known problem with the pseudoscalar ys matrix ([87],
chapters 4 and 13).

We can formally map the fractional system into one in
ordinary spacetime, but with spacetime-dependent effective
electric charge. We already discussed the Maxwell term L,
and found that the action Sy reduces to the usual one S.
From the field redefinition”

V= /oy, 51)

it is clear that the mass term is S, [y]=S,[V]=
—[ dPxmUW¥. The kinetic Lagrangian L, also contains
a fermion-gauge interaction,

1 e
— i D T 1 —
S, 1/d XUy ﬁ<8”+lhcA”>(ﬁW)
. = . e
zl/de\IIy’ (8ﬂ+1%AM)\I/
:i/de\I’y"(aM—H;ZAﬂ)‘I’:S\p, (52)

where ¢, = ¢/+/v. Here we chose to attach the measure
dependence to an effective electron charge rather than to 7
or the speed of light. However, it would be premature to
identify ¢ = e, and claim we have recovered Eq. (35).
Conservations laws will show in a moment, in fact, that

&, = e, (53)

and that the theory in integer picture is exactly the usual
one, S=83+S,,+Sr. From now on we reset
c=1=n.

Thanks to the adoption of the self-adjoint operator D, the
action (49) is real-valued. Consider first the standard case

*This formula implies that the fractional spinor representation
of the Lorentz algebra follows the same rule of the field
representation of [7] and of the vector representation above:
generators can be obtained from the ordinary ones by multiplying
times 1/4/v to the left and /v to the right.

PHYSICAL REVIEW D 89, 024021 (2014)

without mass and gauge field, i.e., the action Sy in
the integer picture. Using the properties (y*)" = yOy#y?
and (°)>=1, it is easy to show that iWy#9,VU—
(i0y#0,¥)" =i0,(Vy*¥). Thus, the Kkinetic term is
self-adjoint up to a total divergence, which can be ignored
upon integration. In the fractional case a similar relation
holds,

iy Dy — (" D)™ = iD,(or*w),  (54)

and again the last term is a total divergence. This would not
have been the case with the derivative of generic weight
(13). Also, the use of ﬁD would determine a Dirac equation
which, when “squared,” would not yield the Klein—-Gordon
equation of [7].

The Euler-Lagrange equations,

oL oL oL

"oDa) op  op
oL oL

"O(Dw) Oy

0, (55)

yield the weighted Dirac equation (and its conjugate) with
electromagnetic interaction:

iy'Dyy —my =0 = ip*Dyy —my = eA y'y,  (56)

Dy + mpr = 0 = iD,y" + my = —A, . (57)

The equation of motion (12) for the gauge field yields the
Maxwell equation (17), with source

JH = —egyyty. (58)

At this point we can determine e. The conservation law (18)
should be compared with Eq. (54), D,(J*/e) = 0. Since

D = v~ '/2D[v'/2.], Egs. (18) and (54) are compatible if,
and only if,

e = \/560. (59)

This is consistent also with Eq. (25), since

1 = —ieairy = Y2 (/i)
e g I
N vt (60)

The improved energy-momentum tensor is the generali-
zation of Eq. (44),
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oL oL
T, =Nl ——=——~——D,A, — =D,y
o Mye a(DﬂAy) oy aDﬂlZ/ (A
oL .
———D D,(FtA
aD”l// O'l//+ l/( H (1’)
1 .
= _ZFHTFI/L'””H + FMDF(H/ - H/_/}/,MD(SV/7 (61)

where we used the fact that £,, + £,, = 0 on shell and the
added correcting term (total weight-1 derivative in the first
line) completes both the second term in (61) into a gauge-
invariant expression and the derivative in the last term into a
gauge covariant derivative (50).

IV. COMPARISON WITH MODELS WITH
VARYING COUPLINGS

In the introduction, we mentioned the existence of
various scenarios where the fine-structure constant o
depends on the spacetime point. These models may or
may not break local Lorentz and diffeomorphism invari-
ance, but we shall assume that they do not. Even then, we
have a choice between varying-e and varying-c models,
with different phenomenological implications. Here we
attempt to set up a bridge between our construction and
these models. In them, « is dynamically determined by a
scalar field, in contrast with the results presented here. Even
putting aside this point, the theories are structurally quite
distinct in the form a varying coupling appears. Still, we
find several points of contact between these constructions.

A. Varying electron charge

A possibility for varying « is to keep £ and ¢ constant,
but allow for a nonconstant electric charge:

ey — e(x). (62)

Bekenstein proposed a phenomenological varying-e model

based on some reasonable assumptions: standard Maxwell
equations, dynamical origin of variations of «, validity of
action principle, gauge invariance, time-reversal invariance,
causality (absence of ghosts), Planck length being the
shortest physical scale, and FEinstein’s equations [88].
The resulting Maxwell action is of the form

1
SF = _Z/d4x\/:§F;wF/w’

F, = ﬁ{aﬂwxm —o,leA]}.  (63)

where ¢ is the determinant of the metric and e(x) is
governed by the dynamics [88-91] via the action

hc

S = ——
¢ 202

d*x —ge‘zaﬂea"e, (64)
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where [ is some length assumed to be larger than the Planck

scale £p = \/hG/c® and smaller than the scales where
standard electromagnetism is verified to high accuracy,
£p <1< 1077 m. The theory can be recast as a dilaton-
like model where only the electromagnetic Lagrangian is
nonminimally coupled to the scalar field ®:= In(e/e)
[90]. By defining a, :=(e/ey)A, and f,, = (e/eg)F,, =

d,a, — 0,a,, the total action reads

S = / d*x\/—g (ﬁg + Lo +722L; — %aﬂ@aﬂq)) ,
(65)

where £, o R is the gravity Lagrangian (R is the Ricci
scalar), L., is the contribution of all the other matter
components, £; = —(1/4)f,,/*, and , = hc/I*. Notice
that ® does not appear inside L., once the coupling
between fermions and the Abelian gauge field is rewritten
in terms of the new variable.

Astrophysical and purely electromagnetic experi-
ments are not able to rule out a time-varying a [88],
nor do tests of the weak equivalence principle [91].°
Cosmology [86,91-95] is compatible with the allowed
variation of the fine-structure constant during the evolution
of the Universe, including at redshifts z < 4 as per Eq. (1)
[19]. A varying a has consequences for the whole Standard
Model of particles. If the electric charge varies in space-
time, one expects that, at high energies, all the gauge
couplings of the electroweak sector are scalar fields
[96,97], leading to variable gauge-boson masses but
constant lepton masses after spontaneous symmetry break-
ing of SU(2), x U(1)y = U(1)gy. In the QCD sector, an
extension of Bekenstein’s theory to a varying strong-
coupling parameter is excluded experimentally [98], while
in grand unification scenarios one obtains that the nucleon
mass, the magnetic moment of the nucleon, and the weak
coupling constant all vary [99-101].

Also, assuming that the effective electric charge is
embodied by a Lorentz scalar field, as in Bekenstein’s
model, changes in a would lead to tremendous changes in
the vacuum energy, which can be made compatible with
observations only via large fine tunings [102].

How does this model compare with the one proposed
here? Most notably, our varying « is not driven by a scalar
field, but is prefixed in spacetime due to its anomalous
geometric structure. Therefore, the phenomenological

*From a cursory inspection of Eq. (65), one might speculate
that varying-e models violate the principle since the scalar ®
couples differently to different matter species. However, it turns
out that the anomalous electric force acting on a charged particle
with mass m(®) is canceled by corrections to the usual Coulomb
force. Thus, different particles with same charge-to-mass ratio
experience the same acceleration in external fields, and the weak
equivalence principle is respected [91].
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constraints mentioned above are simply not applicable to
our work. But even setting aside this very important
practical detail (which does not hold in certain versions
of multiscale spacetimes where the measure is taken as a
dynamical field [3,124]), there is a crucial difference. The
new variables a, and f,, here look like the “integer picture”
variables A, and F,,, but when we look at the action in
terms of the new variables we note a fundamental change.
In Bekenstein-style theories, a dilaton coupling e 2%
appears in front of the “F?” Maxwell term, unlike in the
theory presented here. Furthermore, ® disappears from the
couplings to other matter components, in contrast with
interacting multiscale theories in general [7].

For these reasons, we can conclude that the theory
presented in this paper can not be reduced to the previously
proposed varying e reviewed in this section, both dynami-
cally and structurally.

B. Varying speed of light and Planck constant

In other scenarios, the speed of light is made to be

spacetime dependent [103]:

co = c(x). (66)
A varying speed of light (VSL) was early recognized as
having an impact in the history of the universe [104—109].
The cosmological applications of Eq. (66) may have some
problems [110,111], but these can be overcome in a
different incarnation of (66) [103,112,113]. More recently,
VSL models reemerged as strong contenders to explain the
observed cosmic structure [114] both in a bimetric refor-
mulation [115,116] and in the context of deformed
dispersion relations [117].

Not only does the interest in a varying speed of light lie
in its intimate relation to varying-e models [106,113], but
also in the fact that VSL theories simply correspond to
frameworks where units are adapted with the scales in the
dynamics [112] (and, in particular, chosen such that ¢
varies). Time and space units are redefined so that the
differentials scale as df — [f(x)]¢dt, dx' — [f(x)]’dx,
where f is a function, a and b are constants, and local
Lorentz invariance of the line element requires
c(x) & [f(x)]>=. We recognize here a particular form of
anisotropic multiscaling (one that distinguishes between
space and time variables). In particular, when b = 0 one
formally reabsorbs ¢ in the coordinate

X0 :/dtc(t),

which scales as a length. With this coordinate, all equations
can be made general-covariant and gauge invariant (in a
word, formally identical to the usual ones) provided some
conditions are met. For instance, the field strength of the
Abelian electromagnetic field A is of the form

(67)
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h
F, = ?C [a,, <%AU) ~9, (%A,,)], (68)

and explicit ¢ dependence [hence, coordinate dependence,
unlike Eq. (63)] disappears if e « 7ic (a major difference
with respect to the theory proposed in this paper). However,
even with this constraint, we may still have a varying a.
Specifically, if

(69)

exh(c)c xci,
then

ax hc « 9, (70)
and, as long as g # 0, we have nontrivial effects. Notice
that this amounts to a statement on Planck’s constant:
A(c) o 971, (71)
Moreover, the gravitational dynamics is nontrivial. VSL
models are locally Lorentz invariant (namely, under trans-
formations which look like the usual ones but with ¢
replaced by a varying c¢). Defining the scalar field

x:=1In(c/cy), the total action for a minimal version of
VSL can be written as [112]

S = / d*x\/—g {ﬁg + P (Lopae + L) — %8”;(8")( ,
(72)

where b and w,. are constants. Only when g = 0 is the
theory equivalent to a Brans-Dicke model [112].

Models where e or ¢ varies can be recast in new units
such that, respectively, the electric charge and the speed of
light become constant, but in both cases the dynamics
become substantially more complicated. This criterion of
simplicity is not the only one which attaches one label or
the other (varying-e versus varying-c) to these models:
experiments are able to distinguish between them.
Concerning spatial variations, in VSL «a increases near
compact objects (such as black holes) and electromagnet-
ism may become nonperturbative, while in varying-e
models the opposite happens and a decreases [113]; this
may lead to distinctive predictions for the cosmic micro-
wave background temperature and polarization spectra
[118]. Furthermore, tests of the weak equivalence principle
can distinguish between the two classes of models, since
whereas VSL theories abide by this principle, Bekenstein’s
model does not [113]. Also, the sign of the time variation of
a is in agreement with Keck observations [18,19] in both
theories. VSL scenarios are generally able to predict a
decrease in « in the past for all types of dark matter [113],
but so does the varying-e theory, should the dark matter
electromagnetic energy be of the magnetic type [91].
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Once again, none of these constraints applies to the model
proposed in this paper. However, there are obvious structural
similarities between them, should we be prepared to con-
template anisotropic scaling dimensions (differentiation
between space and time) [46,62].

C. Comparison with multiscale spacetimes

Here we list in a more systematic way the differences
between the varying a models previously proposed
and ours.

1. Multifractional theory and the varying-e pro-
posal are invariant under deformed gauge trans-
formations such that the dependence on the effective
electron charge is inverted. In the multifractional
scenario this transformation is Eq. (19), which can
be also written equivalently as e,;'A, — ¢,'A,+
D, or et A, — et A, + 0,6, where p = /e, is
an ordinary scalar. On the other hand, Bekenstein’s
theory is invariant under eA# — eA” + 8,,4), where
e = e(x). The correspondence e,<>e~! is also
apparent in the comparison of Egs. (36) and (63).
Still, we can play with Eq. (36) and make it
formally equivalent to (63) under the replacement
d<D. In fact, noting that ve, = ej/e,, the multi-
fractional Maxwell field strength is F,, =
e;l [Dﬂ(evAu) - ,sz(evAy)}'

2. In our case, the variation of the fine-structure
constant stems from a variation of e — e, () of
purely geometric nature. In the absence of dynamics
for geometry (both for metric and measure struc-
tures), this time dependence is nondynamical, con-
trary to both varying-e and varying-c models, and
e.(t) is a given profile motivated by multifractal
geometry. A consequence of this (further discussed
in the final section) is that the variation law of the
fine-structure constant does not change during the
history of the Universe, contrary to the cosmology of
Bekenstein’s model [86,92-95].

3. In the VSL context, it is intriguing to notice how the
change of units at the base of that proposal maps into
the notion of “adapting rods” in multiscale models
[62]. Equation (67) corresponds to a coordinate
redefinition such that the theory action looks trivial
from the point of view of general covariance and
Lorentz invariance, but in fact it hides a unit
redefinition of the coordinates. This, in turn, corre-
sponds to a highly nontrivial choice of momentum
space [47]. In multifractional theories exactly the
same thing happens: the units of the coordinates are
defined in a way making geometry (in particular,
momentum space) nontrivial and anomalous,
although it is possible to formally (and only to some
extent) map the theory into a usual one with some
modifications. The resemblance with VSL models is
especially striking for the multifractional theory with
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g-Laplacian [44,47,62], where the most general
action in position space can be made identical to
the usual one when using anomalous coordinates
g(x) (scaling as [g"] ~—a, in various regimes)
which actually depend on coordinates x with normal
scaling ([x#] = —1). Anomalous coordinates feature
also in Hofava-Lifshitz gravity [119,120], where,
however, the scaling is implicit and coordinates are
not composite objects. They can be made composite
by mapping the model to a multifractional one with
anisotropic measure [62]; this connection (valid up
to the choice of symmetries, which crucially deter-
mine the form of the Laplacian in either theory) is
based upon the presence of a hierarchy of scales,
either hidden or explicit. For the very same reason,
the geometries of multifractional, Horava-Lifshitz,
and VSL scenarios share several similarities.

. A comment is in order on the resemblance of the

multifractional measure weight with a dilaton or a
Brans-Dicke scenario. The dilaton of string theory
couples differently in different matter sectors, but
nonperturbative effects may render its coupling
universal [121] (see also [93,122,123]). This is
somewhat similar to the fractal model of [3,124],
where v was regarded as a scalar field appearing as a
global rescaling of the standard Lagrangian. As we
saw above, also varying-e and VSL theories feature
anonminimal coupling between matter and Maxwell
sectors and a scalar field, Egs. (65) and (72). On the
other hand, in the framework studied in the present
paper the measure weight is not a Lorentz scalar but
a fixed coordinate profile without kinetic term
(whose shape is dictated by fractal geometry rather
precisely [35,44]), changing the differential structure
of the geometry. The presence of a nontrivial
measure consistently affects the definition of func-
tional variations, Poisson brackets and Dirac distri-
bution, in turn leading to a deformation of the
Poincaré symmetries [7]. On the other hand, Lorentz
invariance is respected in both varying-e and vary-
ing-c, although Lorentz matrices are themselves
“deformed” in the second case.

. A consequence of the last point is that the argument

of [102] severely against appreciable variations of
may be avoided in multifractional field theories. In
fact, a(x) is not a scalar field but a geometry-
dependent object, and one would be entitled to
subtract off the vacuum-energy shift in the cosmo-
logical constant for all values of « (if @ were a scalar,
the subtraction would proceed only for its value at
low energy or late times).

. Even reverting to the interpretation of [3,124] of v as

a scalar and reinstating a kinetic term (and risking to
incur in the objection of [102]), the multiscale
scenario would be significantly different from the
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others. In the fundamental formulation with field
densities, the weight v modifies all derivatives in the
action, in all sectors. Even when translating the
theory from field densities to fields, the gravitational
sector does not become trivial, since £, is highly
nonlinear in the metric [125]. Furthermore, Poincaré
symmetries would be deformed in the characteristic
way of anomalous geometries, as explained above
[7]. Therefore, multiscale spacetimes cannot be
made physically equivalent to any of the above
dilatonlike proposals.

7. As a bird’s eye view, one can state that multifrac-
tional spacetimes possess a mixture of properties
which make them akin to varying-e and varying-c
models in different ways. On one hand, by con-
struction an effective spacetime-dependent electric
charge naturally arises in multiscale spacetimes. On
the other hand, the latter always predict a decrease of
a in the past regardless the matter content, just like
VSL [113] and, in a subtler way, varying-e models
[91]. Also, in multiscale theories the spacetime
profile of all effectively varying couplings only
depend on the measure weight v(x), just as the
couplings in VSL models depend on the profile (66)
alone, Eq. (72). In this sense, multiscale spacetimes
respect the weak equivalence principle as VSL and
varying-e models, although we have not really
discussed gravity in the present context.

V. DISCUSSION

In this paper, we have worked out the field theory
for electrodynamics in a particular class of multiscale
spacetimes. Fermions and the U(1) gauge field have been
introduced extending previous knowledge of field theories
living in such spacetimes, which was limited to real scalars
[7]. This opens up the possibility to study non-Abelian
gauge fields and, in particular, the electroweak Standard
Model. A discussion of the latter along the same lines of
[96] will be left for the future.

In general, spacetime-dependent couplings naturally
arise in this framework. Electrodynamics in multiscale
geometry displays a varying electric charge whose profile is
determined by the measure, thus falling into a class of
models whose phenomenology has been extensively dis-
cussed in the literature. The type of coordinate dependence
of the charge, however, as well as its motivation and the
overall theoretical structure, widely differ with respect to
other varying-e models, as detailed above. It also makes
this model distinct from the covariant varying-c scenarios
previously proposed. In spite of various similarities, the
present one is a genuinely new proposal for a varying-
constants theory.

A remark valid for both the present multiscale theory and
previous proposals is in order. One should note the differ-
ence between the conserved electric charge, for example in
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Bekenstein’s theory, and the charge that actually couples to
electromagnetism. The number n of electrons is conserved
even when dilaton field ® varies, so ne, obviously provides
a conserved charge, but this is not what couples to the
electromagnetic sector. This has some implications when
applying experimental constraints for the conserved charge
which is, by definition, conserved even in varying-e (and
also varying-c) theories. Therefore, one should carefully
examine the type of experiment and theoretical observable
in order to relate one to the other in a nonmisleading way. In
the case of the theory in multiscale spacetime, there is a
further complication. We have found two types of charges,
the one appearing in the conservation law of the Noether
current [Q and e,, Egs. (23) and (40)] and the one coupling
electrons to the electromagnetic field [e(x), Eq. (59)]. It is
the former, in fact, that we should compare with experi-
ments, since e is just a quantity appearing in the action
which, when properly manipulated, leads consistently
to e,.

As we stated before, none of the phenomenological
constraints valid for previously proposed varying-a theo-
ries can be applied directly to our work. We conclude with
an estimate of the variation of the fine-structure constant in
multiscale spacetimes, between a time ¢ in the past and
today (). From Eq. (40) it follows that

t
t

t

Iy

I—aq z_1+|%|1—a0
.

(73)
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where in the last step we assumed that 7, > t,.* Notice
that Aa/a < 0, in intriguing agreement with the signature
of the effect (1) in quasar observations at Keck [19] [but in
disagreement with VLT results [26,27], Eq. (2)]. If ¢, was
Planck time, the corrective effect would be completely
negligible. Taking instead oy = 1/2 (a reasonable value at
small scales or early times [35,44]) and the observational
bound (1) applied to # ~ 1.79 Gyr (z ~ 3.5, using the best-
fit values of the parameters of [14]) from the big bang, we
obtain an estimate for the intrinsic time scale of the
measure:

*Multiscale theories are not translation invariant in the usual
sense because the measure fixes a frame. The background
dependence establishes that there is an origin which, in the time
direction, we assumed in the text to coincide with the big bang.
On the other hand, in another version of the theory where the
measure is v(x — x’) instead of v(x), the measure singularity is at
some nonzero x'#. The geometry, however, does not change:
spectral and Hausdorff dimension will remain the same, since one
has not changed the scaling law of ». In this respect, the
translation of the origin can be regarded as a different presen-
tation of the theory. However, when comparing with experiments
as in the text, one will notice this x# — x# shift in the measure and
will have to state, for instance, what ¢’ is in relation to the history
of the Universe.
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t, ~0.058 yr, (74)

stating that multifractional effects on the geometry of the
universe have become negligible after about 21 days since
the big bang (which we assumed to be at t = 0). We can
plug back this value to estimate Aa/a at other times.
For the small-redshift quasars (#~ 10 Gyr), we get
Aaja~ —2.4 x 107%, quite compatible with the bound
|Aa/al < 1075 of [15-17]. Extrapolating back to big-
bang nucleosynthesis (BBN, ¢ ~ 2s + 20 min) leads to an
effect of order of Aa/a~ —0.98, which is excluded
experimentally (standard BBN can tolerate as much as
0(1072) variations [10,126]). This may be interpreted
either by regarding the estimate (74) as too large (but in
this case varying a in quasar observations would not be
explained by the multifractional model; matching allowed
a-variations during BBN yields 7, < 0.3 s), or as a failure

For the Oklo natural reactor (t~ 12 Gyr), we obtain
Aa/a ~ —2.2 x 107°, about two orders of magnitude larger than
the present constraints [10]. However, this bound is strongly
model dependent and possibly subject to criticism [99,100], and it
should be taken cum grano salis.

PHYSICAL REVIEW D 89, 024021 (2014)

of real-order multifractional measures and the appearance
of a finer hierarchy of scales in the very early Universe
[44,46], or, again, as the effect of naive simplifications such
as ignoring gravity. In particular, adopting a polynomial
rather than a binomial measure [45] might account for a
more resilient history of the Universe and a better fit to
datasets. Also, inclusion of the full spatial dependence of
the measure (i.e., probing smaller spatial scales, which are
amplified to cosmological size during the history of the
early universe) might interestingly confront the theory with
the preferred-frame or “dipole” effect allegedly found in
quasars data [26,27] (see [127] for an explanation in
dilatonlike theories). Further study will hopefully refine
the multiscale model and its predictions.
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