
Physica Scripta

PAPER

QBism and the Greeks: why a quantum state does
not represent an element of physical reality*

To cite this article: Christopher A Fuchs and Rüdiger Schack 2015 Phys. Scr. 90 015104

 

View the article online for updates and enhancements.

Related content
What does an experimental test of
quantum contextuality prove or disprove?
Andreas Winter

-

Quasi-probability representations of
quantum theory with applications to
quantum information science
Christopher Ferrie

-

Updating the Born rule
Sally Shrapnel, Fabio Costa and Gerard
Milburn

-

Recent citations
Scientific perspectivism in the
phenomenological tradition
Philipp Berghofer

-

Marcus Appleby-

Elise L. Chu-

This content was downloaded from IP address 73.114.145.221 on 09/07/2020 at 05:26

https://doi.org/10.1088/0031-8949/90/1/015104
http://iopscience.iop.org/article/10.1088/1751-8113/47/42/424031
http://iopscience.iop.org/article/10.1088/1751-8113/47/42/424031
http://iopscience.iop.org/article/10.1088/0034-4885/74/11/116001
http://iopscience.iop.org/article/10.1088/0034-4885/74/11/116001
http://iopscience.iop.org/article/10.1088/0034-4885/74/11/116001
http://iopscience.iop.org/article/10.1088/1367-2630/aabe12
http://dx.doi.org/10.1007/s13194-020-00294-w
http://dx.doi.org/10.1007/s13194-020-00294-w
http://dx.doi.org/10.1007/978-3-030-21908-6_2
http://dx.doi.org/10.1007/978-3-030-17701-0_3


QBism and the Greeks: why a quantum
state does not represent an element of
physical reality*

Christopher A Fuchs1,2 and Rüdiger Schack1,3

1 Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch
University, Marais Street, Stellenbosch 7600, South Africa
2 Raytheon BBN Technologies, 10 Moulton Street, Cambridge MA 02138, USA
3Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

E-mail: r.schack@rhul.ac.uk

Received 16 May 2014, revised 25 October 2014
Accepted for publication 6 November 2014
Published 31 December 2014

Abstract
In QBism (or quantum Bayesianism) a quantum state does not represent an element of physical
reality but an agentʼs personal probability assignments, reflecting his subjective degrees of belief
about the future content of his experience. In this paper, we contrast QBism with hidden-variable
accounts of quantum mechanics and show the sense in which QBism explains quantum
correlations. QBismʼs agent-centered worldview can be seen as a development of ideas
expressed in Schrödingerʼs essay ‘Nature and the Greeks’.
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1. Introduction

In 1964 John Bell derived the inequalities which now bear his
name and showed that they are violated by quantum
mechanics [1]. He thus established that quantum mechanics
does not admit a local hidden variable account. Here and
throughout this paper, the term ‘hidden variable’ includes any
mathematical object that represents an element of physical
reality and determines the outcomes of experiments or their
probabilities.

The assumption of locality thus rules out any hidden
variable interpretation of quantum mechanics. Locality also
rules out directly any interpretation that regards the quantum
state as representing an element of physical reality. This can
be seen by adapting an argument by Einstein (see, e.g., the
detailed recent discussion by Harrigan and Spekkens [2]).
Consider a maximally entangled pair of particles far removed
from each other. According to quantum theory, by making
measurements on one of the particles, an experimenter can

choose whether the state for the other particle belongs to one
or the other of two nonoverlapping sets of states (this is
sometimes called ‘steering’). An interpretation that regards
the quantum state as representing an element of physical
reality would thus be nonlocal, because this element of phy-
sical reality could be manipulated at a distance.

Recently, Pusey, Barrett, and Rudolph (PBR) [3], Col-
beck and Renner [4], and other authors, showed that, under
certain conditions, in any hidden variable theory the quantum
state must be a function of the hidden variables. Using the
argument of the preceding paragraph, it follows as a corollary
that hidden variable theories must be nonlocal, which is
established thus without using Bell inequalities (see also [5]
for a recent discussion on the relation between PBR and Bell-
type arguments). In these papers, hidden variables are intro-
duced in the form of an ‘ontological model’ [2]. Within that
framework, a distinction is made between ‘psi-ontic’ and ‘psi-
epistemic’ theories [2], which lets one forget easily that this is
a distinction between two kinds of hidden variable theories,
and that the existence of hidden variables is not implied by
quantum mechanics.
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QBism [6–9] is an explicitly local interpretation of
quantum mechanics in which there is no room for hidden
variables. According to QBism, quantum mechanics is a tool
any agent can use to evaluate his probabilistic expectations
for his personal experience. A quantum state does not
represent an element of physical reality external to the agent,
but reflects the agentʼs personal degrees of belief about the
future content of his experience.

In section 2, we show how the agent-centered worldview
of QBism arises naturally as a development of the funda-
mental issues identified by Schrödinger in his essay ‘Nature
and the Greeks’ [10]. Section 3 gives a short overview of
QBism. Section 4 discusses the function of the Born rule in
QBism and contrasts QBism with hidden variable theories. In
section 5 we show the sense in which QBism explains
quantum correlations, and section 6 concludes the paper.

2. QBism and the Greeks

In the essay ‘Nature and the Greeks’ [10], Schrödinger writes:
‘Gomperz says […] that our whole modern way of thinking is
based on Greek thinking; it is therefore something special,
something that has grown historically over many centuries,
not the general, the only possible way of thinking about
nature. He sets much store on our becoming aware of this, of
recognizing the peculiarities as such, possibly freeing us from
their well-nigh irresistible spell.’

Schrödinger singles out two fundamental features of
modern science that are influenced by Greek thinking in this
way. One is ‘the assumption that the world can be under-
stood’. The other is ‘the simplifying provisional device of
excluding the person of the “understander” (the subject of
cognizance) from the rational world-picture that is to be
constructed’.

About the first of these, Schrödinger remarks that ‘one
would in this context have to discuss the questions: what does
comprehensibility really mean, and it what sense, if any, does
science give explanations?’ The question of explanation is
often brought up in discussions of the foundations of quantum
mechanics. Derivations of the Bell inequalities have been
phrased in terms of possible explanations of the correlated
data produced in a Bell experiment [11]. We will address the
issue of explanation from a QBist perspective in section 5.

Here we focus on the second special feature of modern
science identified by Schrödinger, namely that ‘the scientist
subconsciously, almost inadvertently, simplifies his problem
of understanding nature by disregarding or cutting out of the
picture to be constructed himself, his own personality, the
subject of cognizance’. According to Schrödinger, this ‘leaves
gaps, enormous lacunae, leads to paradoxes and antinomies
whenever, unaware of this initial renunciation, one tries to
find oneself in the picture, or to put oneself, oneʼs own
thinking and sensing mind, back into the picture’.

An example of this fundamental difficulty is provided by
the quantum measurement problem: how is it that an agent
experiences a single outcome when he performs a measure-
ment on a system in a superposition state? In most accounts of

the measurement problem, the quantum state is regarded as
agent-independent and objective, and hence as belonging to
what Schrödinger calls the rational world-picture from which
the subject of cognizance is excluded. The measurement
problem can be seen as a symptom of the ‘paradoxes and
antinomies’ that one finds when one tries to connect this
world-picture to the experience of an agent. The many dec-
ades of ultimately unsuccessful attempts to resolve the mea-
surement problem attest to its fundamental nature.

The following fragment, quoted twice in Schrödingerʼs
essay, shows that the core of the problem was clearly
understood by Democritus: ‘(Intellect:) Sweet is by conven-
tion, and bitter by convention, hot by convention, cold by
convention, color by convention; in truth there are but atoms
and the void. (The Senses:) Wretched mind, from us you are
taking the evidence by which you would overthrow us? Your
victory is your own fall.’ Schrödinger comments ‘You simply
cannot put it more briefly and clearly’.

There is no measurement problem in QBism because the
agent and the agentʼs experience are part of the story from the
beginning. QBism is thus breaking free from the ‘irresistible
spell’ of Greek thinking and abandons ‘the simplifying pro-
visional device of excluding the person of the ‘understander’
(the subject of cognizance) from the rational world-picture
that is to be constructed’. The next section will give details of
this move. Both the locality assumption discussed in the
introduction and a contemporary understanding of probability
provide strong motivations for this move, independently of
Schrödingerʼs views on the impact of Greek thinking on the
presuppositions of contemporary science.

3. QBism

The fundamental primitive of QBism is the concept of
experience. According to QBism, quantum mechanics is a
theory that any agent can use to evaluate his expectations for
the content of his personal experience.

QBism adopts the personalist Bayesian probability the-
ory pioneered by Ramsey [12] and de Finetti [13] and put in
modern form by Savage [14] and Bernardo and Smith [15]
among others. This means that QBism interprets all prob-
abilities, in particular those that occur in quantum mechanics,
as an agentʼs personal, subjective degrees of belief. This
includes the case of certainty—even probabilities 0 or 1 are
degrees of belief [16]. Probabilities acquire an operational
meaning through their use in decision making, or gambling:
an agentʼs probabilities are defined by his willingness to place
or accept bets on the basis of those probabilities. In this fra-
mework, the usual probability rules can be derived from the
requirement that an agentʼs probability assignments should
not lead to a sure loss in a single instance of a bet, a
requirement known as Dutch-book coherence. The prob-
ability rules are therefore of a normative character.

Dutch-book coherence for one agent does not put any
constraints on another agentʼs probability assignments. The
set of probabilities used by an agent have validity for that
agent only. The general theory—degrees of belief constrained
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by Dutch book coherence—can be used by any agent. But
one cannot mix the probability assignments made by different
users of the theory.

In QBism, a measurement is an action an agent takes to
elicit an experience. The measurement outcome is the
experience so elicited. The measurement outcome is thus
personal to the agent who takes the measurement action. In
this sense, quantum mechanics, like probability theory, is a
single user theory. A measurement does not reveal a pre-
existing value. Rather, the measurement outcome is created in
the measurement action.

According to QBism, quantum mechanics can be applied
to any physical system. QBism treats all physical systems in
the same way, including atoms, beam splitters, Stern–Gerlach
magnets, preparation devices, measurement apparatuses, all
the way to living beings and other agents. In this, QBism
differs crucially from various versions of the Copenhagen
interpretation. A common thread among those instead is that
measuring and preparation devices, in their operation as such,
must be treated as belonging to a separate classical domain
outside the scope of quantum mechanics [17, section 3].

An agentʼs beliefs and experiences are necessarily local
to that agent. This implies that the question of nonlocality
simply does not arise in QBism. QBist quantum mechanics is
local because, for any user of quantum mechanics, quantum
states encode the userʼs personal degrees of belief for the
contents of his own experience [9].

Quantum states are represented by density operators ρ in
a Hilbert space assumed to be finite dimensional. A mea-
surement (an action taken by the agent) is described by a
POVM F{ }j , where j labels the potential outcomes experi-
enced by the agent. The agentʼs personalist probability q j( ) of
experiencing outcome j is given by the Born rule,

ρ= ( )q j F( ) tr . (1)j

Similar to the probabilities on the left-hand side of the Born
rule, QBism regards the operators ρ and Fj on the right-hand
side as judgements made by the agent, representing his per-
sonalist degrees of belief.

4. The function of the Born rule

The Born rule as written in equation (1) appears to connect
probabilities on the left-hand side of the equation with other
kinds of mathematical objects—operators—on the right-hand
side. It turns out to be possible, however, to rewrite the rule
entirely in terms of probabilities [7, 8]. For this, consider the
scenario of figure 1, where a reference measurement is
introduced in order to characterize both the system state ρ and
the POVM F{ }j .

We assume that the agentʼs reference measurement is an
arbitrary informationally complete POVM, E{ }i , such that
each Ei is of rank 1, i.e., is proportional to a one-dimensional
projector Πi. Such measurements exist for any finite Hilbert-
space dimension. Furthermore, we assume that, if the agent
carries out the measurement E{ }i for an initial state ρ, upon

getting outcome Ei he would update to the post-measurement
state ρ Π ρΠ ρΠ= tr ( )i i i i . Because the reference measure-
ment is informationally complete, any state ρ corresponds to a
unique vector of probabilities ρ=p i E( ) tr ( )i , and any POVM
F{ }j corresponds to a unique matrix of conditional prob-
abilities Π=r j i F( | ) tr ( )j i .

The operators ρ and Fj on the right-hand side of the Born
rule are thus mathematically equivalent to sets of probabilities
p i( ) and conditional probabilities r j i( | ), respectively. In this
sense, POVMs as well as quantum states are probabilities. In
QBism, POVMs as well as quantum states represent an
agentʼs personal degrees of belief. The Born rule then
becomes

=q j f p i r j i( ) ({ ( )}, { ( )}), (2)

where the precise form of the function f depends on the details
of the reference measurement. The Born rule allows the agent
to calculate his outcome probabilities q j( ) in terms of his
probabilities p i( ) and r j i( | ) defined with respect to a coun-
terfactual reference measurement.

In QBism, the Born rule functions as a coherence
requirement. Rather than setting the probabilities q j( ), the
Born rules relates them to those defining the state ρ and the
POVM F{ }j . Just like the standard rules of probability theory,
the Born rule is normative: the agent ought to assign prob-
abilities that satisfy the constraints imposed by the Born rule.
Unlike the standard rules of probability theory however,

Figure 1. Analysing a measurement in an agent-centered way: the
index j labels the outcomes of some actual measurement the agent
intends to perform, and i labels the outcomes of a reference
measurement which the agent might perform but which remains
counterfactual. In both classical mechanics and quantum mechanics
there exist such reference measurements for which the agentʼs
probabilities q j( ) for outcome j can be expressed in terms of his
probabilities p i( ) for outcome i and his conditional probabilities
r j i( | ) for outcome j given outcome i.
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which can be derived from Dutch-book coherence alone, the
Born rule is empirical. It is a statement about the physical
world.

We will now show that the scenario of figure 1 captures
not only the essential difference between classical physics and
quantum theory, but also the essential difference between
QBism and hidden variables theories. Classical physics rests
on the assumption that, for every system, there exists a
reference measurement such that, for every actual measure-
ment, the following holds. As before, let p i( ) denote an
agentʼs probabilities for outcome i in the reference measure-
ment (the p i( ) characterize the agentʼs system state), let r j i( | )
denote his probabilities for outcome j in the actual measure-
ment given that the reference measurement was carried out
and resulted in outcome i (in a deterministic theory the r j i( | )
would be restricted to values 0 or 1), and let q j( ) denote the
probabilities of outcome j in the actual measurement assum-
ing that the reference measurement remains counterfactual.
Then

∑=q j p i r j i( ) ( ) ( ). (3)
i

Since in the definition of q j( ), the reference measurement
remains counterfactual, equation (3) is not implied by prob-
ability theory [8]. It is a physical postulate. This formulation
of the classical postulate is agent-centered. It connects an
agentʼs degrees of belief about the outcomes of the reference
measurement with his degrees of belief about the outcomes of
the actual measurement.

The agent (or subject) might be thought to be removable
from the picture by taking the variables i to represent external
states of reality that determine the probabilities r j i( | ). In this
case p i( ) denotes the probability that the state of reality is i.
The central assumption of classical physics now takes the
form that, in principle, there is a measurement that simply
reads off the value of i. The classical law equation (3) is then
a consequence of probability theory. It is the same equation as
before, but it now refers to an agent-independent reality. In a
nutshell, this is the 2000 year old Greek maneuver identified
by Schrödinger that excluded the subject from the world
picture.

Of course the world is not classical. There is in general
no reference measurement such that the classical law
equation (3) holds. QBism takes this fact—the nonexistence
of such a reference measurement—as an expression of the
idea that the subject cannot be removed from the world
picture.

By contrast, ontological models [2], or hidden variable
models, try to preserve the concept of an agent-independent
reality. Similar to the agent-independent formulation of
classical physics, they analyze measurements in terms of an
external state of reality i, a probability distribution p i( ) over
external states of reality, and a conditional probability dis-
tribution r j i( | ) which gives the probability for outcome j for
each external state of reality i. Furthermore, the classical law
equation (3) is assumed to hold. Since quantum mechanics
rules out an interpretation of i as the outcome of a reference
measurement, in ontological models equation (3) does not

follow from probability theory but is an independent postu-
late. In these models, the Born rule is either a further inde-
pendent postulate or follows from further assumptions about
the variables i.

QBism keeps the idea of a reference measurement and
thus keeps the subject in the center. Since the reference
measurement is assumed to remain counterfactual, probability
theory alone has nothing to say about the relation between the
probabilities q j( ), p i( ) and r j i( | ). The Born rule can thus be
seen as an addition to probability theory, a normative
requirement of quantum Bayesian coherence [8], which
applies whenever the agent contemplates a particular kind of
reference measurement. The functional relationship
equation (2) depends on the details of the reference mea-
surement. In the special case that the reference measurement
is a symmetric informationally complete POVM (SIC) [18–
20], equation (2) takes the simple form [7, 8]

⎜ ⎟⎛
⎝

⎞
⎠∑= + −q j d p i

d
r j i( ) ( 1) ( )

1
( ). (4)

i

The authors have conjectured that this form of the Born rule
may be used as an axiom in a derivation of quantum theory
[8, 21, 22].

Indeed recently there have been several information-
theoretic axiomatic derivations of quantum theory [23–25].
These may provide important clues and techniques for how to
proceed to a full derivation of quantum theory from
equation (4), which so far has not been complete. The key
question that remains is in identifying what minimal further
principles must be added to equation (4) for the project to be
successful. What would be unique about this approach, if it
proves successful, is the way it would pull the scenario
depicted in figure 1 to the front and center of the mathematical
structure of quantum theory. In [26], one of us (CAF) expands
on why this notion is considered key for a thorough-going
QBist expression of quantum theory. In a nutshell, it is that
equation (4) gives quantitative expression to the idea that the
agent cannot be removed from the world picture.

5. Explanation

According to QBism, the quantum formalism is an addition to
probability theory (see the previous section). One should
therefore expect that explanations offered by quantum theory
have a similar character to explanations offered by probability
theory.

Here is a simple example from probability theory.
Assume an agentʼs prior probabilities for a coin tossing
experiment are such that for him the coin tosses are inde-
pendent and heads and tails are equally likely in each toss.
The agent now considers tossing the coin 100 times, denoting
by h the number of heads. Using simple properties of the
binomial distribution, the agent expects h to lie between 30
and 70 with probability close to 1. When he performs the
experiment, he happens to find the value h = 57.
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Probability theory explains the agentʼs expectations. The
theory allows the agent to understand why, given his prior, he
should be almost certain that he will find a value of h between
30 and 70. On the other hand, probability theory does not
provide any explanation for why the agent found the parti-
cular value h = 57. This hardly limits the wide-ranging
explanatory power of probability theory as witnessed by any
standard probability text.

Our second example is quantum mechanical. Consider an
experimenter who prepares a spin-1/2 particle in an x eigen-
state and performs a measurement using a Stern–Gerlach
device oriented along the z axis. This setup encodes the
experimenterʼs prior. Given this prior, quantum mechanics
explains why, in order to be coherent, the experimenter
should assign probability 1/2 to each of the two possible
outcomes. Say the experimenter experiences the outcome
‘up’. Quantum mechanics does not explain why he experi-
ences ‘up’ and not ‘down’. Far from being a limitation of the
theory, this is an expression of the QBist idea that neither the
outcome of the measurement nor its probability are deter-
mined by some hidden variables: measurement outcomes or
their probabilities are not a function solely of the physical
reality external to the agent. The explanations provided by
quantum mechanics are exactly those one would hope for in a
world in which measurements are acts of creation, i.e., in a
world that is unfinished and open.

The above example extends naturally to the case of
repeated measurements. Assuming the experimenter has an
appropriate prior, quantum mechanics explains why he should
expect, with probability close to 1, that in many repetitions of
the spin measurement the proportion of spin-up outcomes he
experiences will be close to 1/2. Quantum mechanics does not
provide any explanation for the particular proportion the
agent finds—this is just as it was with the coin toss example.
Yet, even more than in the case of probability theory, this
does not prevent quantum mechanics from having unprece-
dented explanatory power.

Correlations are just a special case of more general
probability assignments. To explain a correlation is therefore
no different than to explain a probability assignment. Here is
an example for how correlations arise in quantum mechanics.
Suppose that an agent considers performing a measurement
on a spin-3/2 particle. For given labels a b( , ), the measure-
ment is assumed to be of the form ⊗A B{ }x

a
y
b , where the Ax

a

and By
b correspond to projection operators onto two com-

plementary (two-dimensional) sub-algebras of the full four-
dimensional Hilbert space. If we denote the agentʼs prior state
for the particle by ψ〉| , the agentʼs probabilities p x y a b( , | , )
for experiencing the outcome x y( , ) if he chooses to enact the
measurement labeled by a b( , ) are given by

ψ ψ= ⊗p x y a b A B( , , ) . (5)x
a

y
b

In this way the quantum formalism explains why, given the
agentʼs prior beliefs, he ought to assign the correlations
p x y a b( , | , ).

If the agent performs measurements of this type on a
large number n of particles for which his prior is the product

state ψ〉⊗| n, he can record the frequencies with which the
different outcomes occur for each setting a b( , ) in a data table,
d x y a b( , | , ). As before, quantum mechanics explains why the
agent should expect the measured frequencies to lie in a
certain range, but does not provide an explanation for the
particular numbers the agent obtains in a given realization of
the data table.

The above considerations remain unchanged in the case
that the correlations p x y a b( , | , ) implied by the prior state
and measurement operators violate a Bell inequality. Of
course, Bell inequalities are not usually introduced for sub-
algebras of a spin-3/2 particle, but for measurements on two
space-like separated subsystems. In QBism, however, there is
no important conceptual difference between these two
situations.

The above considerations also remain unchanged in the
case of perfect correlations, ∈p x y a b( , | , ) {0, 1}. Even
these are an agentʼs personal probabilities for his future
experiences. QBism treats all quantum systems and all mea-
surements on an equal footing. That unperformed measure-
ments have no outcomes is true for all measurements,
independently of whether or not the agent assigns probability
1 to one of the outcomes. A statement such as = =p y( 0) 1
expresses the agentʼs personal belief that the measurement
outcome will be y = 0, a belief that is given a quantitative
expression through the bets he would accept on this outcome
—here he would bet an arbitrary amount against the promise
of an arbitrarily small gain. It has been argued by Timpson
[27] that it might be irrational for an agent to make a prob-
ability assignment such as = =p y( 0) 1 unless the agent also
believed in the existence of a ‘truth maker’ that guarantees
that the outcome will indeed be y = 0. Timpsonʼs argument
would lead to the introduction of an additional constraint on
the assignment on probabilities, beyond the constraints
imposed by the probability calculus and, via the Born rule,
quantum mechanics. Such an extra constraint is not implied
by quantum theory and ultimately amounts to the introduction
of hidden variables. It is therefore ruled out by the QBist view
of the world [28, pp 1809–1810 and links therein].

6. Summary

According to QBism, quantum mechanics is a theory any
agent can use to more safely gamble on his potential future
experiences. Quantum mechanics permits any agent to
quantify, on the basis of his past experiences, his probabilistic
expectations for his future experiences. QBism takes mea-
surement outcomes as well as quantum states to be personal
to the agent using the theory. In QBism, there are no agent-
independent elements of physical reality that determine either
measurement outcomes or probabilities of measurement out-
comes. Rather, every quantum measurement is an action on
the world by an agent that results in the creation of something
entirely new. QBism holds this to be true not only for
laboratory measurements on microscopic systems, but for any
action an agent takes on the world to elicit a new experience.
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It is in this sense that agents have a fundamental creative role
in the world.
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