Getting entangled in entanglement is for physics nerds and geeks. For those that don't go there, it's just more evidence that our senses lie. And a big point in this piece is that this whole area can and should influence metaphysics.
If You Thought Quantum Mechanics Was Weird, Check Out Entangled Time
The assumption is that the 'nonlocal' part of quantum nonlocality refers to the entanglement of properties across space. But what if entanglement also occurs across time? Is there such a thing as temporal nonlocality?
The answer, as it turns out, is yes.
Just when you thought quantum mechanics couldn't get any weirder, a team of physicists at the Hebrew University of Jerusalem reported in 2013 that they had successfully entangled photons that never coexisted.
Previous experiments involving a technique called 'entanglement swapping' had already showed quantum correlations across time, by delaying the measurement of one of the coexisting entangled particles; but Eli Megidish and his collaborators were the first to show entanglement between photons whose lifespans did not overlap at all.
...
What on Earth can this mean? Prima facie, it seems as troubling as saying that the polarity of starlight in the far-distant past – say, greater than twice Earth's lifetime – nevertheless influenced the polarity of starlight falling through your amateur telescope this winter.
Even more bizarrely: maybe it implies that the measurements carried out by your eye upon starlight falling through your telescope this winter somehow dictated the polarity of photons more than 9 billion years old.
...
Einstein showed that no sequence of events can be metaphysically privileged – can be considered more real – than any other. Only by accepting this insight can one make headway on such quantum puzzles.'
...
Discerning the nature of entanglement might at times be an uncomfortable project. It's not clear what substantive metaphysics might emerge from scrutiny of fascinating new research by the likes of Megidish and other physicists.
If You Thought Quantum Mechanics Was Weird, Check Out Entangled Time
The assumption is that the 'nonlocal' part of quantum nonlocality refers to the entanglement of properties across space. But what if entanglement also occurs across time? Is there such a thing as temporal nonlocality?
The answer, as it turns out, is yes.
Just when you thought quantum mechanics couldn't get any weirder, a team of physicists at the Hebrew University of Jerusalem reported in 2013 that they had successfully entangled photons that never coexisted.
Previous experiments involving a technique called 'entanglement swapping' had already showed quantum correlations across time, by delaying the measurement of one of the coexisting entangled particles; but Eli Megidish and his collaborators were the first to show entanglement between photons whose lifespans did not overlap at all.
...
What on Earth can this mean? Prima facie, it seems as troubling as saying that the polarity of starlight in the far-distant past – say, greater than twice Earth's lifetime – nevertheless influenced the polarity of starlight falling through your amateur telescope this winter.
Even more bizarrely: maybe it implies that the measurements carried out by your eye upon starlight falling through your telescope this winter somehow dictated the polarity of photons more than 9 billion years old.
...
Einstein showed that no sequence of events can be metaphysically privileged – can be considered more real – than any other. Only by accepting this insight can one make headway on such quantum puzzles.'
...
Discerning the nature of entanglement might at times be an uncomfortable project. It's not clear what substantive metaphysics might emerge from scrutiny of fascinating new research by the likes of Megidish and other physicists.