So one infinity past, and another infinity in the future, two infinities or one infinity?
If you double an infinite quantity, you get something of the same size.
There are two sets, both are infinite. if you take their union, you have another infinite set.
Quite the contrary, I know that there are infinitely many disjoint infinite sets.Since of course you being a mathematical guru know very well there cannot be two but one, it is an absurd proposition.
Here is an example:
look at all powers of 2: So, 2, 4, 8, 16, 32, 64, .... (double each time)
now look at all powers of 3: So 3, 9, 27, 81, 243 ... (triple each time)
then look at all powers of 5: so, 5, 25, 125, 625, 3125, ....
You can do this for every prime number (2, 3, and 5 are prime).
Each prime gives an infinite set. There are infinite many primes. And none of those sets overlaps with any of the others.
An ordered set cannot be used to blindly or dogmatically cover up a finite temporal regress. You know it.
You are assuming the temporal process is finite. I disagree with that assumption.