I do not know why you find the rules of that game so hard to understand. You issued an appeal to authority. Your authority was shown to be a fraud. At that point an adult would say, "sorry, thanks" and appeal to a different and hopefully better authority. Instead you launch into rather ugly personal attacks. Bad show old man, bad show.
What great lengths you’re willing to go to try and preserve your ego.
First, a classic example of an ad hominem on 2 people. (For no reason.)
Second, demeaning another as beneath you and unworthy just because they disagree with you.
Third, trying to grasp at straws using a false appeal to authority example.
Fourth, trying to instill your own control and rules and authority over others. Who are you?
Here are the references cited in the link which were deferred to. Once again, everything you’ve said has had zero relevance to anything.
References Cited:
[1.] James Valentine, On the Origin of Phyla(University of Chicago Press, 2004), p. 35.
[2.] Charles Marshall, “Explaining the Cambrian ‘Explosion’ of Animals,” Annual Review of Earth and Planetary Sciences, 34 (2006):355-384.
[3.] Peter Douglas Ward, On Methuselah’s Trail: Living Fossils and the Great Extinctions (W. H. Freeman, 1992), p. 36.
[4.] Alan Cooper and Richard Fortey, “Evolutionary explosions and the phylogenetic fuse,” Trends in Ecology and Evolution, 13 (April, 1998): 151-156.
[5.] Andrew H. Knoll, and Sean B. Carroll, “Early animal Evolution: Emerging Views from Comparative Biology and Geology,” Science, 284 (June 25, 1999):
2129-2136 (internal citations omitted).
[6.] Vicki Pearse, John Pearse, Mildred Buchsbaum, and Ralph Buchsbaum. Living Invertebrates (Blackwell Scientific Publications, 1987), , p. 764.
[7.] James W. Valentine, D. Jablonski, Doug H. Erwin, “Fossils, molecules and embryos: new perspectives on the Cambrian Explosion,” Development, 126 (1999): 851-859 (internal citations omitted).
[8.] Richard Fortey, “Evolution: The Cambrian Explosion Exploded?,” Science, 293 (July 20, 2001): 438-439 (emphases added).
[9.] Maximilian J. Telford, Sarah J. Bourlat, Andrew Economou, Daniel Papillon and Omar Rota-Stabelli, “The evolution of the Ecdysozoa,” Philosphical Transactions of the Royal Society B, 363 (2008): 1529-1537.
[10.] This is another good example where the molecular data conflicts with morphological data. As Graham Budd explains, if arthropods are distantly related to annelids, “then the striking resemblance of such arthropod systems to (for example) those of annelids would be a convergence, which may be considered by some to be unlikely.” See Graham E. Budd, “Tardigrades as ‘Stem-Group Arthropods’: The Evidence from the Cambrian Fauna,” Zoologischer Anzeiger: A Journal of Comparative Zoology, 240 (2001): 265-279 (internal citations omitted). Or as another paper put it, the molecular data imply “the closest relatives of panarthropods are not segmented, coelomate animals like annelids, but rather are nonsegmented, mostly acoelomateworms with terminal mouth.” Gregory D. Edgecombe, “Palaeontological and Molecular Evidence Linking Arthropods, Onychophorans, and other Ecdysozoa,” Evo Edu Outreach (2009) 2:178-190. Since arthropods are segmented and coelomate animals, this finding is most surprising.
[11.] Jianni Liu, Degan Shu, Jian Han, Zhifei Zhang, Xingliang Zhang, “Origin, diversification, and relationships of Cambrian lobopods,” Gondwana Research, 14 (2008): 277-283.
[12.] Graham E. Budd, “Tardigrades as ‘Stem-Group Arthropods’: The Evidence from the Cambrian Fauna,” Zoologischer Anzeiger: A Journal of Comparative Zoology, 240 (2001): 265-279.
[13.] Robert L. Carroll, “Towards a new evolutionary synthesis,” Trends in Ecology and Evolution, 15 (2000):27-32 (internal citations removed).
[14.] James W. Valentine, David Jablonski and Douglas H. Erwin, “Fossils, molecules and embryos: new perspectives on the Cambrian explosion,” Development, 126 (1999): 851-859.
[15.] Philippe Janvier, “Catching the first fish,” Nature, 402 (November 4, 1999): 21-22 (emphasis added).
[16.] Gregory A. Wray, Jeffrey S. Levinton, Leo H. Shapiro, “Molecular Evidence for Deep Precambrian Divergences Among Metazoan Phyla,” Science, 274:568-573 (October 25, 1996) (internal citations removed) (emphases added.)
[17.] Douglas H. Erwin, Marc Laflamme, Sarah M. Tweedt, Erik A. Sperling, Davide Pisani, Kevin J. Peterson, “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals,” Science, 334 (November 25, 2011): 1091-1097 (internal citations removed) (emphases added).
[18.] Kevin J. Peterson, Michael R. Dietrich and Mark A. McPeek, “MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion,” BioEssays, 31 (1009): 736-747 (internal citations removed) (emphasis added).
[19.] Stephen C. Meyer, Marcus Ross, Paul Nelson, and Paul Chien, “The Cambrian Explosion: Biology’s Big Bang,” Darwinism, Design and Public Education (Michigan State University Press, 2003).
[20.] E�rs Szathm�ry, “When the means do not justify the end, Book review of Sudden Origins: Fossils, Genes, and the Emergence of Species by Jeffrey H. Schwartz,” Nature, 399 (June 24, 1999): 745-746.
[21.] Ibid.
[22.] See Hopi E. Hoekstra and Jerry A. Coyne, “The Locus of Evolution: Evo Devo and the Genetics of Adaptation,” Evolution, 61-5 (2007):
995-1016.
[23.] See for example, Benjamin Prud’homme, Nicolas Gompel, and Sean B. Carroll, “Emerging principles of regulatory evolution,” Proceedings of the National Academy of Sciences USA, 104 (May 15, 2007):
8605-8612.
[24.] Kevin J. Peterson, Michael R. Dietrich and Mark A. McPeek, “MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion,” BioEssays, 31 (1009): 736-747 (internal citations removed).
[25.] Arthur N. Strahler, Science and Earth History: The Evolution/Creation Controversy (New York: Prometheus Books, 1987), 408-409.
[26.] Richard M. Bateman, Peter R. Crane, William A. DiMichele, Paul R. Kenrick, Nick P. Rowe, Thomas Speck, and William E. Stein, “Early Evolution of Land Plants: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation,” Annual Review of Ecology and Systematics, 29 (1998): 263-292.
[27.] See Stefanie De Bodt, Steven Maere, and Yves Van de Peer, “Genome duplication and the origin of angiosperms,” Trends in Ecology and Evolution, 20 (2005): 591-597. (“Angiosperms appear rather suddenly in the fossil record… with no obvious ancestors for a period of 80-90 million years before their appearance”).
[28.] Niles Eldredge, The Monkey Business: A Scientist Looks at Creationism (New York: Washington Square Press, 1982), 65.
[29.] See Alan Cooper and Richard Fortey, “Evolutionary Explosions and the Phylogenetic Fuse,” Trends in Ecology and Evolution, 13 (April, 1998): 151-156; Frank B. Gill, Ornithology, 3rd ed. (New York: W.H. Freeman, 2007), 42.
[30.] See “
New study suggests big bang theory of human evolution,” University of Michigan News Service (January 10, 2000).