As seen from Earth the precession of Mercury's orbit is measured to be 5600 seconds of arc per century (one second of arc=1/3600 degrees). Newton's equations, taking into account all the effects from the other planets (as well as a very slight deformation of the sun due to its rotation) and the fact that the Earth is not an inertial frame of reference, predicts a precession of 5557 seconds of arc per century. There is a discrepancy of 43 seconds of arc per century.
This discrepancy cannot be accounted for using Newton's formalism. Many ad-hoc fixes were devised (such as assuming there was a certain amount of dust between the Sun and Mercury) but none were consistent with other observations (for example, no evidence of dust was found when the region between Mercury and the Sun was carefully scrutinized). In contrast, Einstein was able to predict, without any adjustments whatsoever, that the orbit of Mercury should precess by an extra 43 seconds of arc per century should the General Theory of Relativity be correct.
Precession of the perihelion of Mercury
Abraham Pais notes that the discovery that General Relativity correctly predicted Mercury's precession was “by far the strongest emotional experience in Einstein's scientific life, perhaps in all his life.”
The error is explained by the space time well around mercury being dragged by the sun. When this outside influence is taken into account your problem is not a problem.