Evolution claims life arose from a series of chance events. The Bible says life came from God. This quote regarding a "simple" prokaryotic cell, or a cell without a nucleus, demonstrates the impossibility of life arising from chance, IMO. (Quote from The Origins of Life - Five Questions Worth Asking published by Jehovah's witnesses)
"What does the evidence reveal? Advances in microbiology have made it possible to peer into the awe-inspiring interior of the simplest living prokaryotic cells known. Evolutionary scientists theorize that the first living cells must have looked something like these cells.
If the theory of evolution is true, it should offer a plausible explanation of how the first simple cell formed by chance. On the other hand, if life was created, there should be evidence of ingenious design even in the smallest of creatures. Why not take a tour of a prokaryotic cell? As you do so, ask yourself whether such a cell could arise by chance.
THE CELLS PROTECTIVE WALL
To tour a prokaryotic cell, you would have to shrink to a size that is hundreds of times smaller than the period at the end of this sentence. Keeping you out of the cell is a tough, flexible membrane that acts like a brick and mortar wall surrounding a factory. It would take some 10,000 layers of this membrane to equal the thickness of a sheet of paper. But the membrane of a cell is much more sophisticated than the brick wall. In what ways?
Like the wall surrounding a factory, the membrane of a cell shields the contents from a potentially hostile environment. However, the membrane is not solid; it allows the cell to breathe, permitting small molecules, such as oxygen, to pass in or out. But the membrane blocks more complex, potentially damaging molecules from entering without the cells permission. The membrane also prevents useful molecules from leaving the cell. How does the membrane manage such feats?
Think again of a factory. It might have security guards who monitor the products that enter and leave through the doorways in the factory wall. Similarly, the cell membrane has special protein molecules embedded in it that act like the doors and the security guards.
Some of these proteins (1) have a hole through the middle of them that allows only specific types of molecules in and out of the cell. Other proteins are open on one side of the cell membrane (2) and closed on the other. They have a docking site (3) shaped to fit a specific substance. When that substance docks, the other end of the protein opens and releases the cargo through the membrane (4). All this activity is happening on the surface of even the simplest of cells."
That is just the beginning of the complexity encountered in so-called simple cells.
"What does the evidence reveal? Advances in microbiology have made it possible to peer into the awe-inspiring interior of the simplest living prokaryotic cells known. Evolutionary scientists theorize that the first living cells must have looked something like these cells.
If the theory of evolution is true, it should offer a plausible explanation of how the first simple cell formed by chance. On the other hand, if life was created, there should be evidence of ingenious design even in the smallest of creatures. Why not take a tour of a prokaryotic cell? As you do so, ask yourself whether such a cell could arise by chance.
THE CELLS PROTECTIVE WALL
To tour a prokaryotic cell, you would have to shrink to a size that is hundreds of times smaller than the period at the end of this sentence. Keeping you out of the cell is a tough, flexible membrane that acts like a brick and mortar wall surrounding a factory. It would take some 10,000 layers of this membrane to equal the thickness of a sheet of paper. But the membrane of a cell is much more sophisticated than the brick wall. In what ways?
Like the wall surrounding a factory, the membrane of a cell shields the contents from a potentially hostile environment. However, the membrane is not solid; it allows the cell to breathe, permitting small molecules, such as oxygen, to pass in or out. But the membrane blocks more complex, potentially damaging molecules from entering without the cells permission. The membrane also prevents useful molecules from leaving the cell. How does the membrane manage such feats?
Think again of a factory. It might have security guards who monitor the products that enter and leave through the doorways in the factory wall. Similarly, the cell membrane has special protein molecules embedded in it that act like the doors and the security guards.
Some of these proteins (1) have a hole through the middle of them that allows only specific types of molecules in and out of the cell. Other proteins are open on one side of the cell membrane (2) and closed on the other. They have a docking site (3) shaped to fit a specific substance. When that substance docks, the other end of the protein opens and releases the cargo through the membrane (4). All this activity is happening on the surface of even the simplest of cells."
That is just the beginning of the complexity encountered in so-called simple cells.