Animore
Active Member
You offe nothing in this post ut the same old, tiredless arguments which have been refuted. Without even clicking on the link, you're going going to prove I don't understand science by assuming, blindly, that there is no evidence? This makes no sense.
Typical evo talk? HA! I'm sorry but this is just..
That's the only thing you've got? THAT'S IT? Seriously?
Since you're too lazy to even search up a few links, I'll give you proof:
Discovering DNA
One of the more remarkable things about On the Origin of Species is that Charles Darwin articulated his theory without knowing the exact mechanism by which variation occurs. It wouldn’t be until Watson and Crick’s discovery of DNA in the 1950s that evolutionary biologists would finally have the answer.
The advent of genetics is the single most important thing to happen to the study of evolutionary biology since Darwin’s theory first appeared (with a respectful tip of the hat to Gregor Mendel and his discovery of the fundamental laws of inheritance). Because DNA is universal to all life, its presence strongly suggests that all creatures on Earth evolved from a common ancestor.
It also explains how the proliferation of genetic mutations (essentially copy errors), combined with the processes of natural selection, enables evolution to happen. Ultimately, DNA is the engine that drives evolution. It’s an elegant—sometimes brutal—process that doesn’t require a guiding hand. Natural selection is a wholly autonomous process, thus earning it the moniker of “God killer.”
Finding Transtional Fossils
Species come and go, but life goes on. This is the essential lesson of the extensive fossil record—one that dates back 3.8 billion years. What’s more, it’s a chain of continuity used by evolutionary biologists to study the various interconnected progressions made by species as they change over time. So-called “transitional fossils” — like the recent discovery of Pappochelys, a 240-million-year-old reptile with a set of emerging turtle-like features — provide evidence for “missing links” between two different species by showing some of the traits of both, although this isn’t necessarily evidence of direct descent. Biologists use each discovery of such new species to fill in the evolutionary gaps.
View attachment 15285
The recent discovery of Pappochelys, a 240-million-year-old reptile with a set of emerging turtle-like features, is helping scientists fill in an important evolutionary gap—while causing great consternation to creationists. (Credit: Rainer Schoch/Nature)
The presence of so many fossils demonstrates the ever-changing diversity of life since it first emerged. From life’s early beginnings as single-celled prokaryotic cells through to the Cambrian Explosion and the emergence of dinosaurs and mammals, it’s a story of continuous adaptation. Creationists like to believe that certain evolutionary steps are intractable, but as more and more transitional fossils are discovered, it’s clear that each evolutionary advance can be explained.
For example, some creationists argue that evolutionists cannot identify missing links between reptiles and birds. A post from Scientific American offers a compelling rebuttal:
Actually, paleontologists know of many detailed examples of fossils intermediate in form between various taxonomic groups. One of the most famous fossils of all time is Archaeopteryx, which combines feathers and skeletal structures peculiar to birds with features of dinosaurs. A flock’s worth of other feathered fossil species, some more avian and some less, has also been found. A sequence of fossils spans the evolution of modern horses from the tiny Eohippus. Whales had four-legged ancestors that walked on land, and creatures known as Ambulocetus and Rodhocetus helped to make that transition. Fossil seashells trace the evolution of various mollusks through millions of years. Perhaps 20 or more hominids (not all of them our ancestors) fill the gap between Lucy the australopithecine and modern humans.
Indeed, fortuitous mutations have fueled a trial-and-error process that have produced gradual but dramatic changes in species over the course of eons. Some evolutionary offshoots worked for a while, but changing circumstances—such as difficult environmental conditions or the introduction of a rival species—produced dead ends (e.g. wooly mammoths, sabre toothed tigers, and very likely, the panda bear). Other branches proved more resilient, allowing species to continue in novel directions (birds, as an offshoot of dinosaurs, are an excellent example). And yet some species, such as cyanobacteria, coelacanths, and crocodiles, have barely changed, showing that evolution doesn’t fix what ain’t broke.
Matching Traits to Common Ancestors
Typically, evolutionary biologists like to point out the differences in species as they branch away from common ancestors, but they also like to identify those characteristics that remain common to both. This serves the dual purpose of showing evolution-in-action, while also demonstrating the subtle ways in which speciation can occur.
For example, the form and structure (morphologies) of deer, moose, horses, and zebras are strikingly similar. Not surprisingly, they share a common ancestor. Similarly, seagulls and pelicans are similar in their appearance, behavior, and DNA. Again, they share a common ancestor, from which they deviated in relatively minor but important ways. Similarly, Homo sapiens and Homo neanderthalensis were more alike than they were different, branching off from the evolutionary tree fairly recently in evolutionary history.
As Darwin pointed out 150 years ago, these common characteristics provide indisputable data points in favor of evolution, showing the ways in which species diverge when circumstances change.
Finding Vestigial Traits
One of the more compelling arguments in favor of evolution is the presence of vestigial traits—physical characteristics that are gradually working their way out of an organism’s genetic profile. Most of these traits are benign, but some can be harmful (which is why they’re often referred to as “evolutionary baggage”).
Just as full-blown characteristics don’t appear overnight—such as flight in birds, or an elephant’s long and dextrous trunk—traits that are no longer required for an organism’s day-to-day survival take a long time to disappear. These characteristics fade away because there’s no pressure for the gene or genes in question to retain them, resulting in faded or lingering traits that bear a weak resemblance to their original form.
In humans, classic examples include the appendix, wisdom teeth, the coccyx (or tailbone), and tonsils. Certain behaviors can also be considered vestigial, such as the Palmar Grasp Reflex and our instinctive aversions to bugs and snakes.
Finding Imperfect Characteristics
Because our current physiological form is derived from those of our ancestors, we can hardly be considered an ideal species; there are many inherent design flaws in the human body. The throat (pharynx), for instance, serves as a conduit for both food and air. In males, the urethra both helps move urine from the bladder and transports sperm to the penis. Then there is our inability to biosynthesize vitamin C, the extremely narrow birth canal (in women), and our over-loaded lower backs.
Deliberate conscious design, evolution doesn’t care about perfection. Adaptations simply need to be good enough. What’s more, evolution cannot start from scratch; each species has to be crafted from its previous form, which can often lead to awkward or problematic characteristics.
Would you like me to go on?
@omega2xx