Did you come to that opinion before or after you read the article I quoted and linked?
In 2013, researchers on the Planck project announced they had found out how the earliest light must’ve formed. Right after the Big Bang, the universe was filled with subatomic particles, both matter and antimatter, bumping into each other at a balmy 2,700ºC (4,892ºF). So when an antimatter particle bumps into its opposite, both particles vanish. The going theory that there were slightly more matter particles than antimatter ones, which explains the absence of antimatter in the universeIn 2013, researchers on the Planck project announced they had found out how the earliest light must’ve formed. Right after the Big Bang, the universe was filled with subatomic particles, both matter and antimatter, bumping into each other at a balmy 2,700ºC (4,892ºF). So when an antimatter particle bumps into its opposite, both particles vanish. The going theory that there were slightly more matter particles than antimatter ones, which explains the absence of antimatter in the universe
Meanwhile, photons, protons, and electrons were all crashing into each other, too. When protons and electrons meet, they form hydrogen, releasing light. This is how the first light in the universe was born, about 380,000 years after the Big Bang. Soon, the universe went through a period of rapid expansion. This stretched out the first light’s wavelengths making it into microwaves, what is today called the CMB.
If you disagree with the article, perhaps you can cite some differing science.