If you want to know why do you keep on ignoring the answers you're getting? You've again ignored all the links I gave you that explain some of the evidence and it is gathered and tested.
I've seen lots of people reference lots of direct evidence for evolution after you've asked for it, and you ignore it and just come back and say there is no evidence. I can't imagine what you think you're gaining by that sort of behaviour. What sort of impression do you think it gives people of yourself and your faith?
I even quoted a big chuck of one of the tests, so you wouldn't even have to bother to click on a link. It was here:
Who knows about the "Taung child" fossil? and you just ignored it.
Tell you what, here it is again:
One question that comes up frequently about evolutionary biology is whether it really boils down to speculation and assumption. Most of evolution happened in the distant past, after all. We claim that humans and chimpanzees descended from a single ancestral species over millions of years, for example, but none of us was there to observe that process. To a scientist, though, the right question is not, "Were you there?" but rather "What if?" What if we do share a common ancestor–what should we see? How can we test a hypothesis about the ancient past?
One way we can test for shared ancestry with chimpanzees is to look at the genetic differences between the two species. If shared ancestry is true, these differences result from lots of mutations that have accumulated in the two lineages over millions of years. That means they should look like mutations. On the other hand, if humans and chimpanzees appeared by special creation, we would not expect their genetic differences to bear the distinctive signature of descent from a common ancestor.
What do mutations look like, then? DNA consists of a long string of four chemical bases, which we usually call A, C, G and T (for adenine, cytosine, guanine, and thymine). A mutation is any change to that string. In the simplest mutations, one base replaces another when DNA is incorrectly copied or repaired, e.g., a C at a particular site in a chromosome is replaced by a T, which is then passed onto offspring. These substitutions do not all happen at the same rate; some occur more often than others. For example, C and T are chemically similar to one another, as are A and G, and chemically similar bases are more likely to be mistaken for one another when DNA is being copied. Thus, we find an A becoming a G more often than a T.
This means that as they accumulate, mutations create a characteristic pattern of more and less common changes. It is that pattern that we can look for to see if genetic differences were caused by mutations. To determine exactly what the pattern is, we can just look at genetic differences between individual humans, because these represent mutations that occurred since those two people last shared a common ancestor...
...
Now we are in a position to test whether genetic differences between humans and chimps look like mutations. To determine the pattern for mutations, I calculated the rates for the four classes using human diversity data (which is available online). Then I calculated the pattern seen when comparing human and chimpanzee DNA, also using public data. The first graph is the distribution for humans. As expected, transitions are the most common. That pattern is our signature–the sign that mutation has been at work.
The second graph is the same distribution for differences between human and chimpanzee DNA. The overall rates are different–there are 12 times as many differences between human and chimpanzee DNA as there are between DNA from two humans (note the different scale on the y-axis of the graphs)–but the pattern is almost identical.
Remember my opening question: if humans and chimpanzees shared a common ancestor, what should we see? What we should see is what we do see: genetic differences between the species that look exactly like they were produced by mutations. In scientific terms, I had a hypothesis about the distant past, I tested the hypothesis with data, and it passed the test.
Now, when scientists point to similarities between human and chimpanzee DNA, critics sometimes object that similarities don’t really prove anything, since they could be explained equally well by a common design plan: the creator might well use similar stretches of DNA to carry out similar tasks in separately created species. That objection does not apply here, though, because we are looking at the differences between species. I cannot think of any reason why a designer should choose to make the differences look exactly like they were the result of lots of mutations. The obvious conclusion is that things are what they seem: humans and chimpanzees differ genetically in just this pattern because they have diverged from a single common ancestor.