5th time
Quote any scientific reference that I have denied
Or else apologize for your lies and false accusations
The following article outlines that science knows how and why evolution takes place. Based on your previous statements you do not accept thar science knows how and why evolution takes place. Note bold at the end of this article
Do you accept the conclusions of this article?
Understanding Natural Selection: Essential Concepts and Common Misconceptions | Evolution: Education and Outreach | Full Text
Understanding Natural Selection: Essential Concepts and Common Misconceptions
Introduction
Natural selection is a non-random difference in reproductive output among replicating entities, often due indirectly to differences in survival in a particular environment, leading to an increase in the proportion of beneficial, heritable characteristics within a population from one generation to the next. That this process can be encapsulated within a single (admittedly lengthy) sentence should not diminish the appreciation of its profundity and power. It is one of the core mechanisms of evolutionary change and is the main process responsible for the complexity and adaptive intricacy of the living world. According to philosopher Daniel Dennett (1995), this qualifies evolution by natural selection as “the single best idea anyone has ever had.”
Natural selection results from the confluence of a small number of basic conditions of ecology and heredity. Often, the circumstances in which those conditions apply are of direct significance to human health and well-being, as in the evolution of antibiotic and pesticide resistance or in the impacts of intense predation by humans (e.g., Palumbi 2001; Jørgensen et al. 2007; Darimont et al. 2009). Understanding this process is therefore of considerable importance in both academic and pragmatic terms. Unfortunately, a growing list of studies indicates that natural selection is, in general, very poorly understood—not only by young students and members of the public but even among those who have had postsecondary instruction in biology.
As is true with many other issues, a lack of understanding of natural selection does not necessarily correlate with a lack of confidence about one's level of comprehension. This could be due in part to the perception, unfortunately reinforced by many biologists, that natural selection is so logically compelling that its implications become self-evident once the basic principles have been conveyed. Thus, many professional biologists may agree that “[evolution] shows how everything from frogs to fleas got here via a few easily grasped biological processes” (Coyne 2006; emphasis added). The unfortunate reality, as noted nearly 20 years ago by Bishop and Anderson (1990), is that “the concepts of evolution by natural selection are far more difficult for students to grasp than most biologists imagine.” Despite common assumptions to the contrary by both students and instructors, it is evident that misconceptions about natural selection are the rule, whereas a working understanding is the rare exception.
The goal of this paper is to enhance (or, as the case may be, confirm) readers' basic understanding of natural selection. This first involves providing an overview of the basis and (one of the) general outcomes of natural selection as they are understood by evolutionary biologistsFootnote1. This is followed by a brief discussion of the extent and possible causes of difficulties in fully grasping the concept and consequences of natural selection. Finally, a review of the most widespread misconceptions about natural selection is provided. It must be noted that specific instructional tools capable of creating deeper understanding among students generally have remained elusive, and no new suggestions along these lines are presented here. Rather, this article is aimed at readers who wish to confront and correct any misconceptions that they may harbor and/or to better recognize those held by most students and other non-specialists.
Conclusions
At the very least, it is abundantly clear that teaching and learning natural selection must include efforts to identify, confront, and supplant misconceptions. Most of these derive from deeply held conceptual biases that may have been present since childhood. Natural selection, like most complex scientific theories, runs counter to common experience and therefore competes—usually unsuccessfully—with intuitive ideas about inheritance, variation, function, intentionality, and probability. The tendency, both outside and within academic settings, to use inaccurate language to describe evolutionary phenomena probably serves to reinforce these problems.
Natural selection is a central component of modern evolutionary theory, which in turn is the unifying theme of all biology. Without a grasp of this process and its consequences, it is simply impossible to understand, even in basic terms, how and why life has become so marvelously diverse. The enormous challenge faced by biologists and educators in correcting the widespread misunderstanding of natural selection is matched only by the importance of the task.