The fossil record isn't the only evidence in support of evolution. There is other collaborating evidence, such as overwhelming genetic evidence of common ancestry between humans and other great ape species.
Specific examples from comparative physiology and biochemistry:
Chromosome 2 in humans
Main article: Chromosome 2 (human)
Further information: Chimpanzee Genome Project § Genes of the Chromosome 2 fusion site
Figure 1b: Fusion of ancestral chromosomes left distinctive remnants of telomeres, and a vestigial centromere
Evidence for the evolution of Homo sapiens from a common ancestor with chimpanzees is found in the number of chromosomes in humans as compared to all other members of Hominidae. All hominidae have 24 pairs of chromosomes, except humans, who have only 23 pairs. Human chromosome 2 is a result of an end-to-end fusion of two ancestral chromosomes.
The evidence for this includes:
The correspondence of chromosome 2 to two ape chromosomes. The closest human relative, the common chimpanzee, has near-identical DNA sequences to human chromosome 2, but they are found in two separate chromosomes. The same is true of the more distant gorilla and orangutan.
The presence of a vestigial centromere. Normally a chromosome has just one centromere, but in chromosome 2 there are remnants of a second centromere.
The presence of vestigial telomeres. These are normally found only at the ends of a chromosome, but in chromosome 2 there are additional telomere sequences in the middle.
Chromosome 2 thus presents strong evidence in favour of the common descent of humans and other apes. According to J. W. Ijdo, "We conclude that the locus cloned in cosmids c8.1 and c29B is the relic of an ancient telomere-telomere fusion and marks the point at which two ancestral ape chromosomes fused to give rise to human chromosome 2
Figure 1b: Fusion of ancestral chromosomes left distinctive remnants of telomeres, and a vestigial centromere
https://en.wikipedia.org/wiki/Evidence_o...on_descent
Endogenous retroviruses (or ERVs) are remnant sequences in the genome left from ancient viral infections in an organism. The retroviruses (or virogenes) are always passed on to the next generation of that organism that received the infection. This leaves the virogene left in the genome. Because this event is rare and random, finding identical chromosomal positions of a virogene in two different species suggests common ancestry. Cats (Felidae) present a notable instance of virogene sequences demonstrating common descent. The standard phylogenetic tree for Felidae have smaller cats (Felis chaus, Felis silvestris, Felis nigripes, and Felis catus) diverging from larger cats such as the subfamily Pantherinae and other carnivores. The fact that small cats have an ERV where the larger cats do not suggests that the gene was inserted into the ancestor of the small cats after the larger cats had diverged. Another example of this is with humans and chimps. Humans contain numerous ERVs that comprise a considerable percentage of the genome. Sources vary, but 1% to 8% has been proposed. Humans and chimps share seven different occurrences of virogenes, while all primates share similar retroviruses congruent with phylogeny.