Acute and chronic exposure to cannabinoids has been associated with cognitive deficits, a higher risk for schizophrenia and other drug abuse. However, the precise mechanism underlying such effects is not known. Preclinical studies suggest that cannabinoids modulate brain-derived neurotrophic factor (BDNF). Accordingly, we hypothesized that Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the principal active component of cannabis, would alter BDNF levels in humans.
Healthy control subjects (n = 14) and light users of cannabis (n = 9) received intravenous administration of (0.0286 mg/kg) Delta(9)-THC in a double-blind, fixed order, placebo-controlled, laboratory study. Serum sampled at baseline, after placebo administration, and after Delta(9)-THC administration was assayed for BDNF using ELISA.
Delta(9)-THC increased serum BDNF levels in healthy controls but not light users of cannabis. Further, light users of cannabis had lower basal BDNF levels. Delta(9)-THC produced psychotomimetic effects, perceptual alterations, and "high" and spatial memory impairments.
The effects of socially relevant doses of cannabinoids on BDNF suggest a possible mechanism underlying the consequences of exposure to cannabis. This may be of particular importance for the developing brain and also in disorders believed to involve altered neurodevelopment such as schizophrenia. Larger studies to investigate the effects of cannabinoids on BDNF and other neurotrophins are warranted.
D'Souza, Deepak Cyril et al. (2009) "PSYCHOPHARMACOLOGY" P|569-578
Background: There is growing evidence that adolescence is a key period for neuronal maturation. Despite the high prevalence of marijuana use among adolescents and young adults in the United States and internationally, very little is known about its impact on the developing brain. Based on neuroimaging literature on normal brain developmental during adolescence, we hypothesized that individuals with heavy cannabis use (HCU) would have brain structure abnormalities in similar brain regions that undergo development during late adolescence, particularly the fronto-temporal connection.
Method: Fourteen young adult males in residential treatment for cannabis dependence and 14 age-matched healthy male control subjects were recruited. Patients had a history of HCU throughout adolescence; 5 had concurrent alcohol abuse. Subjects underwent structural and diffusion tensor magnetic resonance imaging. White matter integrity was compared between subject groups using voxelwise and fiber tractography analysis.
Results: Voxelwise and tractography analyses revealed that adolescents with HCU had reduced fractional anisotropy, increased radial diffusivity, and increased trace in the homologous areas known to be involved in ongoing development during late adolescence, particularly in the fronto-temporal connection via arcuate fasciculus.
Conclusions: Our results support the hypothesis that heavy cannabis use during adolescence may affect the trajectory of normal brain maturation. Due to concurrent alcohol consumption in five HCU subjects, conclusions from this study should be considered preliminary, as the DTI findings reported here may be reflective of the combination of alcohol and marijuana use. Further research in larger samples, longitudinal in nature, and controlling for alcohol consumption is needed to better understand the pathophysiology of the effect of cannabis on the developing brain. (c) 2008 Elsevier Ltd. All rights reserved.
Ashtari, Manzar. (2008) "JOURNAL OF PSYCHIATRIC RESEARCH". p|189-204
Cannabis consumption has varying effects over the whole life span, especially on achievements in the areas of schooling, professional life and performance in a social environment. Data from Studies oil remission from neurocognitive deficits following chronic cannabis consumption are ambiguous. The outcome range included everything from complete remission over considerable lasting deficits up to even chronic psychotic disorders. The data seem to be consistent however, when a differentiation between early begin of consumption (before the age of 16) and late begin of consumption is taken into account. Mainly those cannabis users with an early begin of consumption are prone to developing lasting neurocognitive deficits and even a decrease in grey Substance volume, as well as an increase in the risk of psychosis. The correlation of this outcome with cannabis Consumption during a phase of brain development that includes the consolidation of higher cognitive functions, awareness of social cues, planning of concepts and motivation as well as tools of functional control, is highly convincing. The endocannabinoid system reaches the point of highest receptor density during this age of 16/17 years, and many of the above-mentioned developmental processes are modulated by this system. A chronic damage to this system (e.g., down-regulation or desensitisation of CB1receptors by exogenous cannabinoids) therefore holds the potential for permanent neurophysiological as well as neurocognitive deficits, and also for the development of psychotic disorders.
Gudlowski, Y et al. (2008) "GESUNDHEITSWESEN" p|653-657
An increasing number of novel therapeutic agents are targeted at cannabinoid receptors. Drug development programmes of new cannabinoid drugs may be facilitated by the identification of useful biomarkers. This systemic literature review aims to assess the usefulness of direct biomarkers for the effects of cannabis and tetrahydrocannabinol (THC) in healthy volunteers. One hundred and sixty-five useful articles were found that investigated the acute effects of cannabis or THC on the central nervous system (CNS) and heart rate in healthy volunteers. Three hundred and eighteen tests (or test variants) were grouped in test clusters and functional domains, to allow their evaluation as a useful biomarker and to study their dose-response effects. Cannabis/THC affected a wide range of CNS domains. In addition to heart rate, subjective effects were the most reliable biomarkers, showing significant responses to cannabis in almost all studies. Some CNS domains showed indications of depression at lower and stimulation at higher doses. Subjective effects and heart rate are currently the most reliable biomarkers to study the effect of cannabis. Cannabis affects most CNS domains, but too many different CNS tests are used to quantify the drug-response relationships reliably. Test standardization, particularly in motor and memory domains, may reveal additional biomarkers.
Zuurman, Lineke et al. (2009) "BRITISH JOURNAL OF CLINICAL PHARMACOLOGY" p| 5-21